C++ - 悲催的科学匠人 - 冷水's blog
转一个网文:C++的反思
转一个网文:C++的反思
http://www.skywind.me/blog/archives/1398
----------------------------- 节选 ---------------------------------
关于 C++的笑话数都数不清:
笑话:C++是一门不吉祥的语言,据说波音公司之前用ADA为飞机硬件编程,一直用的好好的,后来招聘了一伙大学生,学生们说我靠还在用这么落后的语言,然后换成C++重构后飞机就坠毁了。
笑话:什么是C++程序员呢?就是本来10行写得完的程序,他非要用30行来完成,并自称“封装”,但每每到第二个项目的时候却将80%打破重写,并美其名曰 “重构”。
笑话:C容易擦枪走火打到自己的脚,用C++虽然不容易,但一旦走火,就会把你整条腿给炸飞了。
笑话:同时学习两年 Java的程序员在一起讨论的是面向对象和设计模式,而同时学习两年 C++的程序员,在一起讨论的是 template和各种语言规范到底怎么回事情。
笑话:教别人学 C++的人都挣大钱了,而很多真正用 C++的人,都死的很惨。
笑话:C++有太多地方可以让一个人表现自己“很聪明”,所以使用C++越久的人,约觉得自己“很聪明”结果步入陷阱都不知道,掉坑里了还觉得估计是自己没学好 C++。
笑话:好多写了十多年 C++程序的人,至今说不清楚 C++到底有多少规范,至今仍然时不时的落入某些坑中。
笑话:很多认为 C++方便跨平台的人,实际编写跨平台代码时,都会发现自己难找到两个支持相同标准的 C++编译器。
----------------------------- 节选 ---------------------------------
其中,作者提到“其实C++的矛盾在于一方面承认作为系统级语言内存管理应该交给用户决定,一方面自己却又定义很多不受用户控制的内存操作行为”。确实,看c++书籍的时候,对于其中编译器背后干的一些复杂的事情,感觉真是“你tmd还背着我干了啥?”
c++确实强大,但是好的c++程序员很少,科学计算领域的好c++程序员更少。我刚工作时,在一个小公司主管一个项目,技术方案上我说了算,因此我推c++开发。结果是组里5个人,能用c++的也就一个半(包括我自己),于是大多数c++编程的活都是我干了。所以后来管一个更大的cfd项目,果断用fortran 9x/2003。
后来碰到有人鄙视fortran,吹捧c++,我就心里“呵呵”了。
kmean算法实现
具体描述见machine learning in action
main函数是一个二维点cluster测试
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
struct KMEAN{
int nvec,dim,ngroup;
double *data, /* [nvec][dim] */
*mu, /* [ngroup][dim] */
*scale, *min; /* [dim] */
int *groups, /* nvec */
*count; /* ngroup] */
};
struct KMEAN* KMEAN_init(int nvec, int dim, int ngroup)
{
struct KMEAN* kmean = (struct KMEAN*) calloc(1,sizeof(struct KMEAN));
kmean->nvec = nvec;
kmean->dim = dim;
kmean->ngroup = ngroup;
kmean->data = (double*) calloc(nvec*dim, sizeof(double));
kmean->mu = (double*) calloc(ngroup*dim, sizeof(double));
kmean->scale = (double*) calloc(dim, sizeof(double));
kmean->min = (double*) calloc(dim, sizeof(double));
//kmean->max = (double*) calloc(dim, sizeof(double));
kmean->groups = (int*) calloc(nvec, sizeof(int));
//kmean->mark = (int*) calloc(nvec, sizeof(int));
kmean->count = (int*) calloc(ngroup, sizeof(int));
}
void KMEAN_free(struct KMEAN* kmean)
{
free(kmean->data);
free(kmean->mu);
free(kmean->min);
//free(kmean->max);
free(kmean->scale);
free(kmean->groups);
//free(kmean->mark);
free(kmean->count);
}
inline static double dataij(struct KMEAN* kmean, int i, int j)
{
return kmean->data[i*kmean->dim + j];
}
inline static double muij(struct KMEAN *kmean, int i, int j)
{
return kmean->mu[i*kmean->dim + j];
}
inline static void setdataij(struct KMEAN* kmean, int i, int j, double v)
{
kmean->data[i*kmean->dim + j] = v;
}
inline static void setmuij(struct KMEAN *kmean, int i, int j, double v)
{
kmean->mu[i*kmean->dim + j] = v;
}
inline static void addmuij(struct KMEAN *kmean, int i, int j, double v)
{
kmean->mu[i*kmean->dim + j] += v;
}
void KMEAN_OutputPlt(struct KMEAN* kmean, const char* fname)
{
FILE *fp = fopen(fname,"w");
int n,d;
if(fp==NULL) {puts("Can not open file for outputing tecplot"); return;}
fprintf(fp,"ZONE T=\"DATA-%s\"\n", fname);
for(n=0;n<kmean->nvec;n++)
{
for(d=0;d<kmean->dim;d++)
fprintf(fp,"%11.4E ", dataij(kmean,n,d));
fprintf(fp,"%d\n", kmean->groups[n] );
}
fprintf(fp,"ZONE T=\"MU-%s\"\n", fname);
for(n=0;n<kmean->ngroup;n++)
{
for(d=0;d<kmean->dim;d++)
fprintf(fp,"%11.4E ", muij(kmean,n,d));
fprintf(fp,"%d\n", n );
}
fclose(fp);
}
void KMEAN_CalcScale(struct KMEAN *kmean)
{
int d,n;
double dmax,dmin;
// compute range of each dim
for(d=0;d<kmean->dim;d++){
dmax = dmin = dataij(kmean,0,d);
for(n=1;n<kmean->nvec;n++){
double x;
x = dataij(kmean,n,d);
if( dmax<x ) dmax = x;
if( dmin>x ) dmin = x;
}
kmean->scale[d] = dmax - dmin;
kmean->min[d] = dmin;
//kmean->max[d] = dmax;
//printf("Scaling: DIM %4d min=%11.4E max=%11.4E\n",d,dmin,dmax);
}
// randomly init mu
for(n=0;n<kmean->ngroup;n++){
//printf("init mu Group %3d ",n);
for(d=0;d<kmean->dim;d++){
setmuij(kmean, n,d, kmean->min[d] + 0.8*(rand()/(double)(RAND_MAX)) * kmean->scale[d] );
//printf("x_%3d=%11.4E ",d,muij(kmean,n,d));
}
//puts("");
}
for(n=0;n<kmean->nvec;n++) kmean->groups[n] = 0;
for(d=0;d<kmean->dim;d++)
kmean->scale[d] = 1.0/ (kmean->scale[d] * kmean->scale[d]);
}
static int WhichGroup(struct KMEAN* kmean, int i)
{
int g;
double mindist;
int mingroup;
for(g=0;g<kmean->ngroup;g++){
double dist=0;
int d;
for(d=0;d<kmean->dim;d++){
double xid,mgd;
xid = dataij(kmean,i,d);
mgd = muij(kmean,g,d);
dist += (xid-mgd) * (xid-mgd) * kmean->scale[d];
}
dist = sqrt(dist);
if(g==0) {
mindist = dist; mingroup = 0;
}else if(mindist>dist){
mindist = dist; mingroup = g;
}
}
return mingroup;
}
static double KMEAN_error(struct KMEAN* kmean)
{
double err=0.0;
int n;
for(n=0;n<kmean->nvec;n++)
{
int d,g;
g = kmean->groups[n];
for(d=0;d<kmean->dim;d++)
{
double dd = dataij(kmean,n,d) - muij(kmean,g,d);
err += dd*dd*kmean->scale[d];
}
}
return err;
}
static void UpdateMu(struct KMEAN* kmean)
{
int n,d;
for(n=0;n<kmean->ngroup;n++)
for(d=0;d<kmean->dim;d++)
setmuij(kmean,n,d,0.0);
for(n=0;n<kmean->nvec;n++)
for(d=0;d<kmean->dim;d++){
addmuij(kmean, kmean->groups[n], d, dataij(kmean,n,d) );
}
for(n=0;n<kmean->ngroup;n++)
for(d=0;d<kmean->dim;d++)
setmuij(kmean,n,d, muij(kmean,n,d)/kmean->count[n] );
}
static void KMEAN_sweep(struct KMEAN* kmean, double *err, int *changed)
{
int n;
*changed = 0;
for(n=0;n<kmean->ngroup;n++) kmean->count[n] = 0;
for(n=0;n<kmean->nvec;n++){
int g;
g = WhichGroup(kmean,n);
if(kmean->groups[n] != g) (*changed)++;
kmean->groups[n] = g;
kmean->count[ kmean->groups[n] ] ++;
//printf("Vec %3d is Group %3d\n",n,g);
}
UpdateMu(kmean);
*err = KMEAN_error(kmean);
}
double KMEAN_cluster(struct KMEAN *kmean)
{
int nchanged,it=0;
double err;
KMEAN_CalcScale(kmean);
do{
KMEAN_sweep(kmean, &err, &nchanged);
//printf("%6d changed %6d err=%11.4E\n",it++,nchanged, err);
}while(nchanged>0);
}
void KMEAN_bisect(struct KMEAN *kmean, double *err)
{
int g, worstg;
double err0,minderr;
char fname[1024];
err0 = *err;
minderr = err0;
sprintf(fname,"skmean-g%d.plt",kmean->ngroup);
KMEAN_OutputPlt(kmean, fname);
// 找到最烂的分组
for(g=0;g<kmean->ngroup;g++)
{
struct KMEAN* subset = KMEAN_init(kmean->count[g], kmean->dim, 2);
int i,si=0;
double cerr;
// fill group[g] into subset
for(i=0;i<kmean->nvec;i++){
if(kmean->groups[i]==g){
int d;
for(d=0;d<kmean->dim;d++) setdataij(subset,si,d, dataij(kmean,i,d));
//subset->mark[si] = kmean->mark[i];
si++;
}
}
cerr = KMEAN_cluster(subset);
KMEAN_free(subset);
if(minderr > err0-cerr) {minderr = err0-cerr; worstg = g;}
}
g = worstg; // 最烂的分组
{
struct KMEAN* subset = KMEAN_init(kmean->count[g], kmean->dim, 2);
int i,si=0,d;
double cerr;
// fill group[g] into subset
for(i=0;i<kmean->nvec;i++){
if(kmean->groups[i]==g){
for(d=0;d<kmean->dim;d++) setdataij(subset,si,d, dataij(kmean,i,d));
//subset->mark[si] = kmean->mark[i];
si++;
}
}
// 更新mu
for(d=0;d<kmean->dim;d++) {
setmuij(kmean, g, d, muij(subset, 0, d) );
setmuij(kmean, kmean->ngroup, d, muij(subset, 1, d) );
}
kmean->ngroup++;
KMEAN_free(subset);
// 重新对kmean做一次分组
*err = KMEAN_cluster(kmean);
}
return;
}
void KMEAN_BISECT(struct KMEAN* kmean)
{
int it=0,dest_ngroup = kmean->ngroup;
double err;
if(dest_ngroup<2) return;
kmean->ngroup = 2;
err = KMEAN_cluster(kmean);
do{
KMEAN_bisect(kmean, &err);
printf("Step %6d err=%11.4E\n",++it, err);
}while(kmean->ngroup<dest_ngroup);
}
int main(void)
{
struct KMEAN *kmean = KMEAN_init(80, 2, 4);
double err;
{
FILE* fp = fopen("testSet.txt","r");
int n=0;
for(n=0;n<80;n++){
double x,y;
fscanf(fp,"%lf%lf", &x,&y);
setdataij(kmean,n,0, x);
setdataij(kmean,n,1, y);
}
fclose(fp);
}
/* 下面这一行是采用普通kmean */
//err = KMEAN_cluster(kmean); printf("err=%11.4E\n", err);
/* 下面这一行是采用二分kmean */
KMEAN_BISECT(kmean);
KMEAN_OutputPlt(kmean, "skmean-g4.plt");
KMEAN_free(kmean);
}
C++中实现动态多维数组模板的分析-06
这里先给出arrayindex类的源代码。
#ifndef ARRAYINDEX_HPP
#define ARRAYINDEX_HPP
#include <cstring>
#ifdef debug0
#include <cstdio>
#endif
class ArrayIndex
{
public:
ArrayIndex(size_t ndim, int ranges[][2]);
~ArrayIndex(void);
size_t Getsidx(int a_midx[], int& o_stat);
void Getmidx(size_t a_sidx, int o_midx[]);
size_t Getlength(void);
size_t Getndim(void);
size_t Getdim(size_t a_n);
void Getrange(size_t a_dim, int o_range[2], int& o_stat);
public:
enum{NORMAL, WRONG_DIM, WRONG_RANGE};
private:
size_t length_;
size_t ndim_;
size_t maxdim_;
size_t *dims_;
size_t *size_;
size_t **shift_;
int **range_;
};
inline size_t ArrayIndex::Getlength(void)
{
return length_;
}
inline size_t ArrayIndex::Getndim(void)
{
return ndim_;
}
inline size_t ArrayIndex::Getdim(size_t a_n)
{
return dims_[a_n];
}
inline void ArrayIndex::Getrange(size_t a_dim, int o_range[2], int& o_stat)
{
if(a_dim>=ndim_) {o_stat = ArrayIndex::WRONG_DIM; return;}
o_range[0] = range_[a_dim][0];
o_range[1] = range_[a_dim][1];
o_stat = ArrayIndex::NORMAL;
return;
}
size_t ArrayIndex::Getsidx(int a_midx[], int& o_stat)
{
size_t sidx=a_midx[0]-range_[0][0];
for(size_t n=1;n<ndim_;n++)
{
sidx += shift_[n][ a_midx[n]-range_[n][0] ];
}
return sidx;
}
void ArrayIndex::Getmidx(size_t a_sidx, int o_midx[])
{
size_t loc = a_sidx;
for(size_t n=ndim_-1; n>0; n--)
{
for(size_t m=0;m<dims_[n];m++)
if( loc >= shift_[n][m] ) o_midx[n] = m;
loc -= shift_[n][ o_midx[n] ];
o_midx[n] += range_[n][0];
}
o_midx[0] = loc + range_[0][0];
}
ArrayIndex::ArrayIndex(size_t ndim, int ranges[][2]):
ndim_(ndim),
range_(NULL)
{
range_ = new int* [ndim_];
range_[0] = new int [ndim_ * 2];
for(size_t n=1;n<ndim_;n++) range_[n] = range_[n-1] + 2;
dims_ = new size_t[ndim_];
size_ = new size_t[ndim_];
length_ = 1;
maxdim_ = 0;
for(size_t n=0;n<ndim_;n++)
{
dims_[n] = ranges[n][1] - ranges[n][0] + 1;
range_[n][0] = ranges[n][0];
range_[n][1] = ranges[n][1];
size_[n] = length_;
length_ *= dims_[n];
if(dims_[n]>maxdim_) maxdim_ = dims_[n];
}
shift_ = new size_t* [ndim_];
shift_[0] = new size_t[maxdim_*ndim_];
for(size_t n=1;n<ndim_;n++) shift_[n] = shift_[n-1] + maxdim_;
for(size_t n=1;n<ndim_;n++)
{
shift_[n][0] = 0;
for(size_t m=1;m<dims_[n];m++)
{
shift_[n][m] = shift_[n][m-1] + size_[n];
}
}
return;
}
ArrayIndex::~ArrayIndex(void)
{
delete [] shift_[0];
delete [] shift_;
delete [] range_[0];
delete [] range_;
delete [] size_;
delete [] dims_;
}
#endif
还有一个测试代码
#include "qkarray.hpp"
int main(void)
{
int stat;
size_t ndim=5;
int range[5][2] = {{1,2},{5,7},{1,5},{9,10},{1,1}}, midx[20];
ArrayIndex index(ndim,range);
index.Getrange(4, range[0], stat);
if(ndim==5)
{
size_t count = 0;
for(size_t n=0;n<ndim;n++) {
midx[n] = 0;
index.Getrange(n,range[n],stat);
printf(" Range[%5ld] = %5ld:%5ld\n", n, range[n][0],range[n][1]);
}
printf(" Array size = %d\n",index.Getlength() );
count = 0;
for(int m=range[4][0];m<=range[4][1];m++)
for(int l=range[3][0];l<=range[3][1];l++)
for(int k=range[2][0];k<=range[2][1];k++)
for(int j=range[1][0];j<=range[1][1];j++)
for(int i=range[0][0];i<=range[0][1];i++)
{
midx[0] = i; midx[1] = j; midx[2] = k; midx[3] = l;midx[4] = m;
index.Getmidx(count, midx);
count ++;
printf("[%5ld] [%5ld] [%5ld] [%5ld] [%5ld] == %5ld \n", midx[0], midx[1], midx[2], midx[3],midx[4],
index.Getsidx(midx, stat));
}
}
return 1;
}
C++中实现动态多维数组模板的分析-05
在分析04中,我写出了多维编号到一维编号的转换关系。不过那时假设多维编号采用C风格,都是从0开始的。实际我需要支持非0开始的编号,即可以从任一一个整数a开始以1递增到另外一个不小于a的整数b。在这种情况下,要将非0开始的多维编号转换为内部以0开始的编号,就可以使用前述的公式了。
这次,开始进行设计。
首先命名这个类为 arrayindex
它必须具备的最重要的方法有
1 根据给定的维数和每个维的范围创建一个实例
ArrayIndex(size_t ndim, int ranges[][2]);
ndim是一个非负数,表示维数。range是每个维的范围range[i][0]是起始编号,
range[i][1]是终止编号。为了方便,令i>=1
2 从一个多维编号转换到一维编号
size_t Getsidx(int a_midx[], int& o_stat);
a_midx[]存储多维编号,为方便起见,从a_mix[1]开始有效。
3 从一个一维编号转换到多维编号
void Getmidx(size_t a_sidx, int o_midx[]);
这个类的关键成员应该包含
size_t length_; // 数组数据总个数
size_t ndim_; // 维数
size_t maxdim_; // 最大维数
size_t *dims_; // 每个维的尺寸
size_t *size_; // 每个维度上切片的尺寸。比如,数组[5][3][2],第一维是一维的串,它的切片就是单个元素,尺寸为1;第二维是一个二维的片,其切片是低一维的串,每个串的尺寸是5;第三维是一个三维块,其切片是低一维片,尺寸是5X3。如此类推到更高维。
size_t **shift_; // 每个维上所有标号的偏移。比如数组[5][3][2],按照我们先前的分析,必须存储第一维的5个偏移,第二维的3个偏移和第三维的2个偏移。因此shift_是个二维数组。
int **range_; // 每个维的范围