悲催的科学匠人 - 冷水's blog

kmean算法实现

具体描述见machine learning in action

main函数是一个二维点cluster测试

 

#include <math.h>
#include <stdlib.h>
#include <stdio.h>
struct KMEAN{
int nvec,dim,ngroup;
double *data,     /*  [nvec][dim] */
       *mu,       /*  [ngroup][dim] */
       *scale, *min;    /*  [dim] */
int  *groups,     /* nvec */
     *count;      /* ngroup] */
};


struct KMEAN* KMEAN_init(int nvec, int dim, int ngroup)
{
  struct KMEAN* kmean = (struct KMEAN*) calloc(1,sizeof(struct KMEAN));
  kmean->nvec = nvec;
  kmean->dim  = dim;
  kmean->ngroup = ngroup;
  
  kmean->data  = (double*) calloc(nvec*dim, sizeof(double));
  kmean->mu    = (double*) calloc(ngroup*dim, sizeof(double));
  kmean->scale = (double*) calloc(dim, sizeof(double));
  kmean->min   = (double*) calloc(dim, sizeof(double));
  //kmean->max   = (double*) calloc(dim, sizeof(double));
  kmean->groups = (int*) calloc(nvec, sizeof(int));
  //kmean->mark   = (int*) calloc(nvec, sizeof(int));
  kmean->count  = (int*) calloc(ngroup, sizeof(int));
}



void KMEAN_free(struct KMEAN* kmean)
{
  free(kmean->data);
  free(kmean->mu);
  free(kmean->min);
  //free(kmean->max);
  free(kmean->scale);
  free(kmean->groups);
  //free(kmean->mark);
  free(kmean->count);
}

inline static double dataij(struct KMEAN* kmean, int i, int j)
{
   return kmean->data[i*kmean->dim + j];
}

inline static double muij(struct KMEAN *kmean, int i, int j)
{
  return kmean->mu[i*kmean->dim + j];
}

inline static void setdataij(struct KMEAN* kmean, int i, int j, double v)
{
   kmean->data[i*kmean->dim + j] = v;
}

inline static void setmuij(struct KMEAN *kmean, int i, int j, double v)
{
  kmean->mu[i*kmean->dim + j] = v;
}

inline static void addmuij(struct KMEAN *kmean, int i, int j, double v)
{
  kmean->mu[i*kmean->dim + j] += v;
}



void KMEAN_OutputPlt(struct KMEAN* kmean, const char* fname)
{
   FILE *fp = fopen(fname,"w");
   int n,d;
   if(fp==NULL) {puts("Can not open file for outputing tecplot"); return;}
   
   fprintf(fp,"ZONE T=\"DATA-%s\"\n", fname);
   for(n=0;n<kmean->nvec;n++)
   {
      for(d=0;d<kmean->dim;d++)
        fprintf(fp,"%11.4E ", dataij(kmean,n,d));
      fprintf(fp,"%d\n", kmean->groups[n] );
    }
   fprintf(fp,"ZONE T=\"MU-%s\"\n", fname);
   for(n=0;n<kmean->ngroup;n++)
   {
      for(d=0;d<kmean->dim;d++)
        fprintf(fp,"%11.4E ", muij(kmean,n,d));
      fprintf(fp,"%d\n", n );
    }
   
   fclose(fp);
}

void KMEAN_CalcScale(struct KMEAN *kmean)
{
  int d,n;
  double dmax,dmin;
  
  // compute range of each dim
  for(d=0;d<kmean->dim;d++){
    dmax = dmin = dataij(kmean,0,d);
    for(n=1;n<kmean->nvec;n++){
      double x;
      x = dataij(kmean,n,d);
      if( dmax<x )  dmax = x;
      if( dmin>x )  dmin = x;
    }    
    kmean->scale[d] = dmax - dmin;
    kmean->min[d] = dmin;
    //kmean->max[d] = dmax;
    //printf("Scaling: DIM %4d min=%11.4E max=%11.4E\n",d,dmin,dmax);
  }
  
  // randomly init mu
  for(n=0;n<kmean->ngroup;n++){
    //printf("init mu Group %3d ",n);
    for(d=0;d<kmean->dim;d++){
      setmuij(kmean, n,d,   kmean->min[d] + 0.8*(rand()/(double)(RAND_MAX)) * kmean->scale[d] );
      
      //printf("x_%3d=%11.4E ",d,muij(kmean,n,d));
    }
    //puts("");
  }
  
  for(n=0;n<kmean->nvec;n++) kmean->groups[n] = 0;
  for(d=0;d<kmean->dim;d++)
    kmean->scale[d] = 1.0/ (kmean->scale[d] * kmean->scale[d]);
}

static int WhichGroup(struct KMEAN* kmean, int i)
{
   int g;
   double mindist;
   int mingroup;
   
   
   for(g=0;g<kmean->ngroup;g++){
     double dist=0;
     int d;
     for(d=0;d<kmean->dim;d++){
       double xid,mgd;
       xid =  dataij(kmean,i,d);
       mgd = muij(kmean,g,d);
       dist += (xid-mgd) * (xid-mgd) * kmean->scale[d];
     }
     dist = sqrt(dist);
     if(g==0) {
       mindist =  dist; mingroup = 0;
     }else if(mindist>dist){
       mindist =  dist; mingroup = g;
     }
   }
   return mingroup;
}


static double KMEAN_error(struct KMEAN* kmean)
{
   double err=0.0;
   int n;
   for(n=0;n<kmean->nvec;n++)
   {
     int d,g;
     g = kmean->groups[n];
     for(d=0;d<kmean->dim;d++)
     {
        double dd = dataij(kmean,n,d) - muij(kmean,g,d);
        err += dd*dd*kmean->scale[d];
     }
   }
   return err;
}


static void UpdateMu(struct KMEAN* kmean)
{
   int n,d;
   for(n=0;n<kmean->ngroup;n++) 
   for(d=0;d<kmean->dim;d++)
      setmuij(kmean,n,d,0.0);
      
   for(n=0;n<kmean->nvec;n++)
   for(d=0;d<kmean->dim;d++){
     addmuij(kmean, kmean->groups[n], d, dataij(kmean,n,d) );
   }
   
   for(n=0;n<kmean->ngroup;n++) 
   for(d=0;d<kmean->dim;d++)
      setmuij(kmean,n,d,   muij(kmean,n,d)/kmean->count[n] );
}

static void KMEAN_sweep(struct KMEAN* kmean, double *err, int *changed)
{
   int n;
   
   *changed = 0;
   for(n=0;n<kmean->ngroup;n++)  kmean->count[n] = 0;
   
   for(n=0;n<kmean->nvec;n++){
     int g;
     g = WhichGroup(kmean,n);
     if(kmean->groups[n] != g) (*changed)++;
     kmean->groups[n] = g;
     kmean->count[ kmean->groups[n] ] ++;
     //printf("Vec %3d is Group %3d\n",n,g);
   }
   UpdateMu(kmean);
   *err =  KMEAN_error(kmean);
   
}

double KMEAN_cluster(struct KMEAN *kmean)
{
   int nchanged,it=0;
   double err;
   
   KMEAN_CalcScale(kmean);
   do{
     KMEAN_sweep(kmean, &err, &nchanged);
     //printf("%6d changed %6d  err=%11.4E\n",it++,nchanged, err);
   }while(nchanged>0);
}


void KMEAN_bisect(struct KMEAN *kmean, double *err)
{
   
   int g, worstg;
   double err0,minderr;
   char fname[1024];
   err0 = *err;
   minderr = err0;
   
   
   sprintf(fname,"skmean-g%d.plt",kmean->ngroup);
   KMEAN_OutputPlt(kmean, fname);
   
   // 找到最烂的分组
   for(g=0;g<kmean->ngroup;g++)
   {
      struct KMEAN* subset = KMEAN_init(kmean->count[g], kmean->dim, 2);
      int i,si=0;
      double cerr;
      // fill group[g] into subset
      for(i=0;i<kmean->nvec;i++){
        if(kmean->groups[i]==g){
          int d;
          for(d=0;d<kmean->dim;d++)  setdataij(subset,si,d,  dataij(kmean,i,d));
          //subset->mark[si] = kmean->mark[i];
          si++;
        }
      }
      
      cerr = KMEAN_cluster(subset);
      KMEAN_free(subset);
      if(minderr > err0-cerr) {minderr = err0-cerr; worstg = g;}
   }
   
   g = worstg;   // 最烂的分组
   {
      struct KMEAN* subset = KMEAN_init(kmean->count[g], kmean->dim, 2);
      int i,si=0,d;
      double cerr;
      // fill group[g] into subset
      for(i=0;i<kmean->nvec;i++){
        if(kmean->groups[i]==g){
          for(d=0;d<kmean->dim;d++)  setdataij(subset,si,d,  dataij(kmean,i,d));
          //subset->mark[si] = kmean->mark[i];
          si++;
        }
      }
      // 更新mu
      for(d=0;d<kmean->dim;d++) {
         setmuij(kmean, g, d,  muij(subset, 0, d) );
         setmuij(kmean, kmean->ngroup, d,  muij(subset, 1, d) );
      }
      kmean->ngroup++;
      KMEAN_free(subset);
      
      // 重新对kmean做一次分组
      *err = KMEAN_cluster(kmean);
   }
   
   return;
}



void KMEAN_BISECT(struct KMEAN* kmean)
{
    int  it=0,dest_ngroup = kmean->ngroup;
    double err;
    
    if(dest_ngroup<2) return;
    
    kmean->ngroup = 2;
    err = KMEAN_cluster(kmean);
    
    do{
       KMEAN_bisect(kmean, &err);
       printf("Step %6d err=%11.4E\n",++it, err);
    }while(kmean->ngroup<dest_ngroup);    
}








int main(void)
{
    struct KMEAN *kmean = KMEAN_init(80, 2, 4);
    double err;
    
    {
      FILE* fp = fopen("testSet.txt","r");
      int n=0;
      for(n=0;n<80;n++){
         double x,y;
         fscanf(fp,"%lf%lf", &x,&y);
         setdataij(kmean,n,0, x);
         setdataij(kmean,n,1, y);
      }
      fclose(fp);
    }
    /*  下面这一行是采用普通kmean */
    //err = KMEAN_cluster(kmean);  printf("err=%11.4E\n", err);
    
    /*  下面这一行是采用二分kmean */
    KMEAN_BISECT(kmean);
    
    KMEAN_OutputPlt(kmean, "skmean-g4.plt");
    
    KMEAN_free(kmean);

}




Host by is-Programmer.com | Power by Chito 1.3.3 beta | © 2007 LinuxGem | Design by Matthew "Agent Spork" McGee