悲催的科学匠人 - 冷水's blog
kmean算法实现
具体描述见machine learning in action
main函数是一个二维点cluster测试
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
struct KMEAN{
int nvec,dim,ngroup;
double *data, /* [nvec][dim] */
*mu, /* [ngroup][dim] */
*scale, *min; /* [dim] */
int *groups, /* nvec */
*count; /* ngroup] */
};
struct KMEAN* KMEAN_init(int nvec, int dim, int ngroup)
{
struct KMEAN* kmean = (struct KMEAN*) calloc(1,sizeof(struct KMEAN));
kmean->nvec = nvec;
kmean->dim = dim;
kmean->ngroup = ngroup;
kmean->data = (double*) calloc(nvec*dim, sizeof(double));
kmean->mu = (double*) calloc(ngroup*dim, sizeof(double));
kmean->scale = (double*) calloc(dim, sizeof(double));
kmean->min = (double*) calloc(dim, sizeof(double));
//kmean->max = (double*) calloc(dim, sizeof(double));
kmean->groups = (int*) calloc(nvec, sizeof(int));
//kmean->mark = (int*) calloc(nvec, sizeof(int));
kmean->count = (int*) calloc(ngroup, sizeof(int));
}
void KMEAN_free(struct KMEAN* kmean)
{
free(kmean->data);
free(kmean->mu);
free(kmean->min);
//free(kmean->max);
free(kmean->scale);
free(kmean->groups);
//free(kmean->mark);
free(kmean->count);
}
inline static double dataij(struct KMEAN* kmean, int i, int j)
{
return kmean->data[i*kmean->dim + j];
}
inline static double muij(struct KMEAN *kmean, int i, int j)
{
return kmean->mu[i*kmean->dim + j];
}
inline static void setdataij(struct KMEAN* kmean, int i, int j, double v)
{
kmean->data[i*kmean->dim + j] = v;
}
inline static void setmuij(struct KMEAN *kmean, int i, int j, double v)
{
kmean->mu[i*kmean->dim + j] = v;
}
inline static void addmuij(struct KMEAN *kmean, int i, int j, double v)
{
kmean->mu[i*kmean->dim + j] += v;
}
void KMEAN_OutputPlt(struct KMEAN* kmean, const char* fname)
{
FILE *fp = fopen(fname,"w");
int n,d;
if(fp==NULL) {puts("Can not open file for outputing tecplot"); return;}
fprintf(fp,"ZONE T=\"DATA-%s\"\n", fname);
for(n=0;n<kmean->nvec;n++)
{
for(d=0;d<kmean->dim;d++)
fprintf(fp,"%11.4E ", dataij(kmean,n,d));
fprintf(fp,"%d\n", kmean->groups[n] );
}
fprintf(fp,"ZONE T=\"MU-%s\"\n", fname);
for(n=0;n<kmean->ngroup;n++)
{
for(d=0;d<kmean->dim;d++)
fprintf(fp,"%11.4E ", muij(kmean,n,d));
fprintf(fp,"%d\n", n );
}
fclose(fp);
}
void KMEAN_CalcScale(struct KMEAN *kmean)
{
int d,n;
double dmax,dmin;
// compute range of each dim
for(d=0;d<kmean->dim;d++){
dmax = dmin = dataij(kmean,0,d);
for(n=1;n<kmean->nvec;n++){
double x;
x = dataij(kmean,n,d);
if( dmax<x ) dmax = x;
if( dmin>x ) dmin = x;
}
kmean->scale[d] = dmax - dmin;
kmean->min[d] = dmin;
//kmean->max[d] = dmax;
//printf("Scaling: DIM %4d min=%11.4E max=%11.4E\n",d,dmin,dmax);
}
// randomly init mu
for(n=0;n<kmean->ngroup;n++){
//printf("init mu Group %3d ",n);
for(d=0;d<kmean->dim;d++){
setmuij(kmean, n,d, kmean->min[d] + 0.8*(rand()/(double)(RAND_MAX)) * kmean->scale[d] );
//printf("x_%3d=%11.4E ",d,muij(kmean,n,d));
}
//puts("");
}
for(n=0;n<kmean->nvec;n++) kmean->groups[n] = 0;
for(d=0;d<kmean->dim;d++)
kmean->scale[d] = 1.0/ (kmean->scale[d] * kmean->scale[d]);
}
static int WhichGroup(struct KMEAN* kmean, int i)
{
int g;
double mindist;
int mingroup;
for(g=0;g<kmean->ngroup;g++){
double dist=0;
int d;
for(d=0;d<kmean->dim;d++){
double xid,mgd;
xid = dataij(kmean,i,d);
mgd = muij(kmean,g,d);
dist += (xid-mgd) * (xid-mgd) * kmean->scale[d];
}
dist = sqrt(dist);
if(g==0) {
mindist = dist; mingroup = 0;
}else if(mindist>dist){
mindist = dist; mingroup = g;
}
}
return mingroup;
}
static double KMEAN_error(struct KMEAN* kmean)
{
double err=0.0;
int n;
for(n=0;n<kmean->nvec;n++)
{
int d,g;
g = kmean->groups[n];
for(d=0;d<kmean->dim;d++)
{
double dd = dataij(kmean,n,d) - muij(kmean,g,d);
err += dd*dd*kmean->scale[d];
}
}
return err;
}
static void UpdateMu(struct KMEAN* kmean)
{
int n,d;
for(n=0;n<kmean->ngroup;n++)
for(d=0;d<kmean->dim;d++)
setmuij(kmean,n,d,0.0);
for(n=0;n<kmean->nvec;n++)
for(d=0;d<kmean->dim;d++){
addmuij(kmean, kmean->groups[n], d, dataij(kmean,n,d) );
}
for(n=0;n<kmean->ngroup;n++)
for(d=0;d<kmean->dim;d++)
setmuij(kmean,n,d, muij(kmean,n,d)/kmean->count[n] );
}
static void KMEAN_sweep(struct KMEAN* kmean, double *err, int *changed)
{
int n;
*changed = 0;
for(n=0;n<kmean->ngroup;n++) kmean->count[n] = 0;
for(n=0;n<kmean->nvec;n++){
int g;
g = WhichGroup(kmean,n);
if(kmean->groups[n] != g) (*changed)++;
kmean->groups[n] = g;
kmean->count[ kmean->groups[n] ] ++;
//printf("Vec %3d is Group %3d\n",n,g);
}
UpdateMu(kmean);
*err = KMEAN_error(kmean);
}
double KMEAN_cluster(struct KMEAN *kmean)
{
int nchanged,it=0;
double err;
KMEAN_CalcScale(kmean);
do{
KMEAN_sweep(kmean, &err, &nchanged);
//printf("%6d changed %6d err=%11.4E\n",it++,nchanged, err);
}while(nchanged>0);
}
void KMEAN_bisect(struct KMEAN *kmean, double *err)
{
int g, worstg;
double err0,minderr;
char fname[1024];
err0 = *err;
minderr = err0;
sprintf(fname,"skmean-g%d.plt",kmean->ngroup);
KMEAN_OutputPlt(kmean, fname);
// 找到最烂的分组
for(g=0;g<kmean->ngroup;g++)
{
struct KMEAN* subset = KMEAN_init(kmean->count[g], kmean->dim, 2);
int i,si=0;
double cerr;
// fill group[g] into subset
for(i=0;i<kmean->nvec;i++){
if(kmean->groups[i]==g){
int d;
for(d=0;d<kmean->dim;d++) setdataij(subset,si,d, dataij(kmean,i,d));
//subset->mark[si] = kmean->mark[i];
si++;
}
}
cerr = KMEAN_cluster(subset);
KMEAN_free(subset);
if(minderr > err0-cerr) {minderr = err0-cerr; worstg = g;}
}
g = worstg; // 最烂的分组
{
struct KMEAN* subset = KMEAN_init(kmean->count[g], kmean->dim, 2);
int i,si=0,d;
double cerr;
// fill group[g] into subset
for(i=0;i<kmean->nvec;i++){
if(kmean->groups[i]==g){
for(d=0;d<kmean->dim;d++) setdataij(subset,si,d, dataij(kmean,i,d));
//subset->mark[si] = kmean->mark[i];
si++;
}
}
// 更新mu
for(d=0;d<kmean->dim;d++) {
setmuij(kmean, g, d, muij(subset, 0, d) );
setmuij(kmean, kmean->ngroup, d, muij(subset, 1, d) );
}
kmean->ngroup++;
KMEAN_free(subset);
// 重新对kmean做一次分组
*err = KMEAN_cluster(kmean);
}
return;
}
void KMEAN_BISECT(struct KMEAN* kmean)
{
int it=0,dest_ngroup = kmean->ngroup;
double err;
if(dest_ngroup<2) return;
kmean->ngroup = 2;
err = KMEAN_cluster(kmean);
do{
KMEAN_bisect(kmean, &err);
printf("Step %6d err=%11.4E\n",++it, err);
}while(kmean->ngroup<dest_ngroup);
}
int main(void)
{
struct KMEAN *kmean = KMEAN_init(80, 2, 4);
double err;
{
FILE* fp = fopen("testSet.txt","r");
int n=0;
for(n=0;n<80;n++){
double x,y;
fscanf(fp,"%lf%lf", &x,&y);
setdataij(kmean,n,0, x);
setdataij(kmean,n,1, y);
}
fclose(fp);
}
/* 下面这一行是采用普通kmean */
//err = KMEAN_cluster(kmean); printf("err=%11.4E\n", err);
/* 下面这一行是采用二分kmean */
KMEAN_BISECT(kmean);
KMEAN_OutputPlt(kmean, "skmean-g4.plt");
KMEAN_free(kmean);
}