KNN算法的实现 - 悲催的科学匠人 - 冷水's blog
KNN算法的实现
具体描述见machine learning in action
knn.h
/* knn.c */ struct KNN *KNNInit(int nvectors, int dim, int ngroup, int *ierr); void KNNFree(struct KNN *knn, int *ierr); double *KNNGetdata(struct KNN *knn, int ivec, int *ierr); double KNNGetCoord(struct KNN *knn, int ivec, int icoord, int *ierr); void KNNSetGroup(struct KNN *knn, int ivec, int group, int *ierr); void KNNSetDataGroup(struct KNN *knn, int ivec, double *data, int group, int *ierr); void KNNCalcScale(struct KNN *knn, int *ierr); double KNNCalcDistance(struct KNN *knn, int ivec, double *mydata, int *ierr); int KNNCalcGroup(struct KNN *knn, double *mydata, int k, int *ierr);
knn.c
#include <stdlib.h>
#include <math.h>
#include <stdlib.h>
struct KNN{
int nvec;
int dim;
double *data;
double *scale;
int ngroups;
int *group; /* group ID (0,1,..., ngroups-1) for each vec*/
};
inline int KNNGetDataOffset(struct KNN *knn, int ivec)
{
return ivec*knn->dim;
}
inline int KNNCheckIvec(struct KNN* knn, int ivec)
{
if( ivec<0 || 1+ivec>knn->nvec)
return 1;
else
return 0;
}
struct KNN* KNNInit(int nvectors, int dim, int ngroup, int *ierr)
{
double *data, *scale;
int *group, i;
if(nvectors<1) {*ierr = 1; puts("KNNInit, error, nvectors<1"); return NULL; }
if(dim<1) {*ierr= 2; puts("KNNInit, error, dim<1"); return NULL; }
if(ngroup<2) {*ierr=4; puts("KNNInit, error, ngroup<2"); return; }
data = (double*) calloc(nvectors*dim, sizeof(double));
if (data==NULL) {*ierr = 5; puts("KNNInit, error, calloc knn->data fail"); return; }
group = (int*) calloc(nvectors, sizeof(int));
if(group==NULL) {*ierr=6; puts("KNNInit, error, calloc knn->group fail"); return;}
for(i=0;i<nvectors;i++) group[i] = -1;
scale = (double*) calloc(dim, sizeof(double));
if(scale==NULL) {*ierr=7; puts("KNNInit, error, calloc knn->scale fail"); return;}
struct KNN* knn = (struct KNN*)calloc(1,sizeof(struct KNN));
if(knn==NULL) {*ierr=999; puts("KNNInit, error, calloc KNN fail"); return NULL;}
knn->data = data;
knn->group = group;
knn->scale = scale;
knn->nvec= nvectors;
knn->dim = dim;
knn->ngroups = ngroup;
ierr = 0;
return knn;
}
void KNNFree(struct KNN* knn, int* ierr)
{
if(knn==NULL) return;
if(knn->data) free(knn->data);
if(knn->group) free(knn->group);
free(knn);
}
double* KNNGetdata(struct KNN *knn, int ivec, int *ierr)
{
*ierr = KNNCheckIvec(knn,ivec);
if(*ierr) {puts("KNNGetData, irror, Wrong ivec"); return;}
return knn->data + KNNGetDataOffset(knn, ivec);
}
double KNNGetCoord(struct KNN* knn, int ivec, int icoord, int* ierr)
{
double *data;
data = KNNGetdata(knn, ivec, ierr);
if(*ierr) return 0;
if(icoord<0 || icoord>=knn->dim) {
puts("KNNGetCoord, error, wrong icoord"); *ierr= 2; return 0;
}
*ierr = 0;
return data[icoord];
}
void KNNSetGroup(struct KNN* knn, int ivec, int group, int* ierr)
{
*ierr = KNNCheckIvec(knn,ivec); if(*ierr) {puts("KNNSetGroup, error, Wrong ivec"); return;}
*ierr = group<0 || group>=knn->ngroups; if(*ierr) {puts("KNNSetGroup, error, Wrong group ID (should be [0,..,ngroups-1])"); return;}
knn->group[ivec] = group;
*ierr = 0;
return;
}
void KNNSetDataGroup(struct KNN *knn,int ivec, double *data, int group, int* ierr)
{
int i;
double *knndata = KNNGetdata(knn, ivec, ierr);
if(*ierr) return;
for(i=0; i<knn->dim; i++) knndata[i] = data[i];
KNNSetGroup(knn, ivec, group, ierr);
if(*ierr) return;
*ierr = 0;
return;
}
static int KNNIsDataFilled(struct KNN* knn)
{
int i;
for(i=0; i<knn->nvec; i++) if(knn->group[i]==-1) return 0;
return 1;
}
void KNNCalcScale(struct KNN* knn, int *ierr)
{
int i,d;
if(!KNNIsDataFilled(knn)) { puts("KNNCalcScale, error, data is not filled"); return; }
for(d=0;d<knn->dim;d++){
double xmax,xmin;
xmin = KNNGetCoord(knn, 0, d, ierr);
xmax = xmin;
for(i=1; i<knn->nvec; i++){
double f;
f = KNNGetCoord(knn, i, d, ierr);
if(xmax<f) xmax = f;
if(xmin>f) xmin = f;
}
if(xmax!=xmin)
knn->scale[d] = 1./((xmax-xmin)*(xmax-xmin));
else
knn->scale[d] = 1.0;
}
}
double KNNCalcDistance(struct KNN *knn, int ivec, double *mydata, int *ierr)
{
double *data=NULL, dist=0.0;
int i;
data = KNNGetdata(knn, ivec, ierr); if(*ierr) {puts("KNNCalcDistance, error, KNNGetData fail"); return;}
for(i=0;i<knn->dim;i++){
dist += (mydata[i]-data[i]) * (mydata[i]-data[i]) * knn->scale[i];
}
*ierr = 0;
return sqrt(dist);
}
static void make_list(double *dlist, int* idlist, int n, int cid, double cdist)
{
double dmax;
int imax, i;
dmax = dlist[0]; imax=0;
for(i=1;i<n;i++){
if(dlist[i]>dmax) {dmax=dlist[i]; imax=i;}
}
if(cdist>dmax)
return;
else{
dlist[imax] = cdist;
idlist[imax]= cid;
}
}
static int vote(struct KNN* knn, int *groups, int k)
{
int *votes;
int i, max=0;
votes = (int*) calloc(knn->ngroups, sizeof(int));
for(i=0;i<knn->ngroups;i++) votes[i]=0;
for(i=0; i<k; i++)
votes[ groups[i] ] ++;
for(i=1; i<knn->ngroups; i++) {
if(votes[i]>votes[max]) max=i;
}
return max;
}
int KNNCalcGroup(struct KNN* knn, double *mydata, int k, int* ierr)
{
double* dists;
int* vecid;
int n;
double dmax,dmin;
int imax,imin;
dists = (double*) calloc(k, sizeof(double));
if(dists==NULL) {*ierr=-1; puts("KNNCalcGroup, error, cannot allocate space for dists"); return;}
vecid = (int*) calloc(k, sizeof(int));
if(vecid==NULL) {*ierr=-1; puts("KNNCalcGroup, error, cannot allocate space for vecid"); return;}
for(n=0;n<k;n++){
dists[n] = -1.;
vecid[n] = -1;
}
for(n=0;n<knn->nvec;n++){
double cdist;
cdist = KNNCalcDistance(knn, n, mydata, ierr);
if(n==0){
int l;
for(l=0;l<k;l++) {
dists[l] = cdist; dmax=cdist;dmin=cdist;
vecid[l] = n; imax=n; imin=n;
}
}
else{
make_list(dists, vecid, k, n, cdist);
}
}
free(dists);
for(n=0;n<k;n++) vecid[n] = knn->group[vecid[n]];
n = vote(knn, vecid,k);
free(vecid);
return n;
}
测试手写数字识别的程序 digits.c
#include <stdio.h>
#include "knn.h"
#define NVEC 1934
#define DIM 1024
#define NGROUP 10
#define K 3
void InputData(struct KNN *knn)
{
FILE* fp;
int id=0, i, ndata[10]={188, 197, 194, 198, 185, 186, 194, 200, 179, 203};
double mydata[DIM];
int g, n, ierr;
char fname[32];
for(g=0;g<10;g++)
for(n=0;n<=ndata[g];n++){
double mydata[1024];
sprintf(fname,"trainingDigits/%d_%d.txt", g,n);
//puts(fname);
fp = fopen(fname,"r");
for(i=0;i<1024;i++){
int d;
fscanf(fp,"%1d",&d);
mydata[i] = d;
}
KNNSetDataGroup(knn, id, mydata, g, &ierr);
if(ierr!=0) puts("ERROR!!");
id ++;
fclose(fp);
}
printf("Read %d training data\n",id);
}
void Test(struct KNN *knn)
{
FILE* fp;
int id=0, i, ndata[10]={86, 96, 91, 84, 99, 99, 86, 95, 90, 88};
double mydata[DIM];
int g, n, ierr,score;
char fname[32];
for(g=0;g<10;g++)
{
score = 0;
for(n=0;n<=ndata[g];n++){
double mydata[1024];
int ans;
sprintf(fname,"testDigits/%d_%d.txt", g,n);
fp = fopen(fname,"r");
for(i=0;i<1024;i++){
int d;
fscanf(fp,"%1d",&d);
mydata[i] = d;
}
fclose(fp);
ans = KNNCalcGroup(knn, mydata, K, &ierr);
if(ans==g) score ++;
else{
printf(" fail for %s\n",fname);
}
}
printf("Digit %1d score=%3d/%3d = %6.2f%%\n",
g, score, ndata[g]+1, 100.*score/(ndata[g]+1.));
}
}
int main(void)
{
int ierr;
struct KNN* knn;
knn = KNNInit(NVEC,DIM,NGROUP, &ierr);
if(ierr) {puts("can not KNNInit"); return; }
InputData(knn);
KNNCalcScale(knn, &ierr);
Test(knn);
KNNFree(knn, &ierr);
}
评论 (0)