悲催的科学匠人 - 冷水's blog

Latex Listings Package 使用方法[ZZ]

转自 http://xavier.yo2.cn/articles/latex-listings-package-%E4%BD%BF%E7%94%A8%E6%96%B9%E6%B3%95.html

 

这里就不班门弄斧了,直接转载过来备忘好了。

转载自http://blog.linuxgem.org/lyanry/show/319.html

listings 是专用于代码排版的 LaTeX 宏包,可对关键词、注释和字符串等使用不同的字体和颜色或颜色,也可以为代码添加边框、背景等风格。

1 基本用法

下面给出一份用于排版 C 语言 HelloWorld 程序代码的完整的 LaTeX 文档:

\documentclass{article}
\usepackage{listings}
\begin{document}
\begin{lstlisting}[language=C]
int main(int argc, char ** argv)
{
printf("Hello world!\n");
return 0;
}
\end{lstlisting}
\end{document}

注意,要使用 listings 宏包提供的语法高亮,需要 xcolor 宏包支持。

4 添加边框

listings 宏包为代码边框提供了很多风格,大体可分为带有阴影的边框与圆角边框。这里仅仅给出一个阴影边框的示例,至于其它边框风格,可查阅 listings 宏包文档,里面给出了一些示例。

下面 LaTeX 源文档将为代码添加阴影边框,并将阴影设置为浅灰色:

\begin{lstlisting}[language={[ANSI]C}, keywordstyle=\color{blue!70}, commentstyle=\color{red!50!green!50!blue!50}, frame=shadowbox, rulesepcolor=\color{red!20!green!20!blue!20}]
int main(int argc, char ** argv)
{
printf("Hello world!\n") ;
return 0;
}
\end{lstlisting}
5 添加行号

很多时候需要对文档中的代码进行解释,只有带有行号的代码才可以让解释更清晰,因为你只需要说第 x 行代码有什么作用即可。如果没有行号,那对读者而言就太残忍了,他们不得不从你的文字叙述中得知行号信息,然后去一行一行的查到相应代码行。

listings 宏包通过参数 numbers 来设定行号,该参数的值有两个,分别是 left 与 right,表示行号显示在代码的左侧还是右侧。下面为带有边框的代码添加行号,并设置行号字体为 \tiny:

\begin{lstlisting}[language={[ANSI]C}, numbers=left, numberstyle=\tiny, keywordstyle=\color{blue!70}, commentstyle=\color{red!50!green!50!blue!50}, frame=shadowbox, rulesepcolor=\color{red!20!green!20!blue!20}]
int main(int argc, char ** argv)
{
printf("Hello world!\n") ;
return 0;
}
\end{lstlisting}
6 全局设置

上面所给的各个示例中,lstlisting 环境后面尾随了很多参数,要是每使用一次 lstlisting 环境就要设置这么多参数,那就没什么意思了。

可以使用 \lstset 命令在 LaTeX 源文档的导言区设定好 lstlisting 环境所用的公共参数,如下:

\documentclass{article}
\usepackage{listings}
\usepackage{xcolor}
\begin{document}
\lstset{numbers=left,
numberstyle=\tiny,
keywordstyle=\color{blue!70}, commentstyle=\color{red!50!green!50!blue!50},
frame=shadowbox,
rulesepcolor=\color{red!20!green!20!blue!20}
}
\begin{lstlisting}[language={[ANSI]C}]
int main(int argc, char ** argv)
{
printf("Hello world!\n") ;
return 0;
}
\end{lstlisting}
\end{document}

 

7 显示中文

listings 宏包默认是不支持包含中文字串的代码显示的,但是可以使用 “逃逸” 字串来显示中文。

在 \lstset 命令中设置逃逸字串的开始符号与终止符号,推荐使用的符号是左引号,即 “ `”

\lstset{numbers=left,
numberstyle=\tiny, keywordstyle=\color{blue!70}, commentstyle=\color{red!50!green!50!blue!50},
frame=shadowbox, rulesepcolor=\color{red!20!green!20!blue!20},
escapeinside=``}
……
\begin{lstlisting}[language={[ANSI]C}]
int main(int argc, char ** argv)
{
printf("`我爱中文`!\n") ;
return 0;
}
\end{lstlisting}

 

8 调整一下边距

listings 的代码框的宽度默认是与页芯等宽的,其上边距也过于小,可根据自己的审美观念适度调整一下。我通常是将代码框的左右边距设置为 2em,上边距为 1em,下边距采用默认值即可,所作设定如下:

\lstset{numbers=left, numberstyle=\tiny, 
keywordstyle=\color{blue!70}, 
commentstyle=\color{red!50!green!50!blue!50}, 
frame=shadowbox, 
rulesepcolor=\color{red!20!green!20!blue!20},escapeinside=``, 
xleftmargin=2em,xrightmargin=2em, aboveskip=1em}

PLOT3D文件格式[ZZ]

http://hi.baidu.com/necrohan/blog/item/4997711f294102fde0fe0b8e.html

 

其实早已熟悉,只是借来存档一下。此外,以前不知iblank的unformatted格式写法,这个博文居然有。

 

 

PLOT3D文件格式
 
 
FLOW3D可以导出的数据格式有限,说明中说支持tecplot,但是是需要tecplot插件的,而且要360版本才行,找了2个插件可是不能用,而且插件的功能好像很有限。
PLOT3D格式的数据可以在后处理时导出,为此查了一下PLOT3D格式的数据,实在不行再转为tecplot格式的数据。

PLOT3D 数据格式
PLOT3D数据格式源于NASA,广泛用于规则网格的CFD数据文件。PLOT3D文件可以是ASCII, 也可是Fortran unformatted 或 C binary形式。
PLOT3D文件分为网格文件(XYZ 文件), 空气动力学结果文件 (Q 文件)和通用结果文件(函数文件 + 函数名称文件)。网格文件中可加入所谓的IBlank参数。

IBlank参数的定义:
IBlank是在每一网格点上给出的一个正数值,定义如下:
0 - 计算域之外,非流体点
1 - 正常点
2 - 固面边界点
负数 - 分块网格界面点,其数值为相邻网格块的块号

以下为各文件使用FORTRAN读入的语句,所有文件均为无格式文件。

网格文件(XYZ文件):

XYZ 文件, 单块(single-block):
READ(IUNIT) IMAX,JMAX,KMAX
READ(IUNIT) (((X(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX),&
            (((Y(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX),&
            (((Z(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)

XYZ 文件, 单块(single-block), 加 IBlank:
READ(IUNIT) IMAX,JMAX,KMAX
READ(IUNIT) (((X(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX),&
            (((Y(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX),&
            (((Z(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX),&
            (((IBLANK(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)

XYZ 文件, 二维, 单块(single-block):
READ(IUNIT) IMAX,JMAX
READ(IUNIT) ((X(I,J),I=1,IMAX),J=1,JMAX),&
            ((Y(I,J),I=1,IMAX),J=1,JMAX)

XYZ 文件, 多块(multi-block)
READ(IUNIT) NBLOCK
READ(IUNIT) (IMAX(N),JMAX(N),KMAX(N),N=1,NBLOCK)
DO N=1,NBLOCK
READ(IUNIT) (((X(I,J,K),I=1,IMAX(N)),J=1,JMAX(N)),K=1,KMAX(N)),&
            (((Y(I,J,K),I=1,IMAX(N)),J=1,JMAX(N)),K=1,KMAX(N)),&
            (((Z(I,J,K),I=1,IMAX(N)),J=1,JMAX(N)),K=1,KMAX(N))
ENDDO

XYZ 文件, 多块(multi-block), 加 IBlank:
READ(IUNIT) NBLOCK
READ(IUNIT) (IMAX(N),JMAX(N),KMAX(N),N=1,NBLOCK)
DO N=1,NBLOCK
READ(IUNIT) (((X(I,J,K),I=1,IMAX(N)),J=1,JMAX(N)),K=1,KMAX(N)),&
            (((Y(I,J,K),I=1,IMAX(N)),J=1,JMAX(N)),K=1,KMAX(N)),&
            (((Z(I,J,K),I=1,IMAX(N)),J=1,JMAX(N)),K=1,KMAX(N)),&
            (((IBLANK(I,J,K),I=1,IMAX(N)),J=1,JMAX(N)),K=1,KMAX(N))
ENDDO

XYZ 文件, 二维, 多块(multi-block)
READ(IUNIT) NBLOCK
READ(IUNIT) (IMAX(N),JMAX(N),N=1,NBLOCK)
DO N=1,NBLOCK
READ(IUNIT) ((X(I,J),I=1,IMAX(N)),J=1,JMAX(N)),&
            ((Y(I,J),I=1,IMAX(N)),J=1,JMAX(N))
ENDDO

空气动力学结果文件 (Q 文件)(Q 文件定义过窄,现已很少使用。):

Q 文件专为外流空气动力学设计,对三维流动,数组变量如下:
Q1 - 无量纲 密度
Q2 - 无量纲 X-动量
Q3 - 无量纲 Y-动量
Q4 - 无量纲 Z-动量
Q5 - 无量纲 总能
另加4个参数:
FSMACH - 自由流马赫数
ALPHA - 攻角
RE     - 雷诺数
TIME   - 时间

Q 文件, 单块(single-block):
READ(IUNIT) IMAX,JMAX,KMAX
READ(IUNIT) FSMACH,ALPHA,RE,TIME
READ(IUNIT) ((((Q(I,J,K,M),I=1,IMAX),J=1,JMAX),K=1,KMAX),M=1,5)

Q 文件, 二维, 单块(single-block):
READ(IUNIT) IMAX,JMAX
READ(IUNIT) FSMACH,ALPHA,RE,TIME
READ(IUNIT) (((Q(I,J,M),I=1,IMAX),J=1,JMAX),M=1,4)

Q 文件, 多块(multi-block):
READ(IUNIT) NBLOCK
READ(IUNIT) (IMAX(N),JMAX(N),KMAX(N),N=1,NBLOCK)
DO N=1,NBLOCK
READ(IUNIT) FSMACH,ALPHA,RE,TIME
READ(IUNIT)((((Q(I,J,K,M),I=1,IMAX(N)),J=1,JMAX(N)),K=1,KMAX(N)),M=1,5)
ENDDO

Q 文件定义过窄,现已很少使用。大多CFD工作者使用通用结果文件,即
所谓的函数文件(function file)。函数文件中可定义任意数量的数组变量,
其名称在另一函数名称文件(function name file)中给出。

函数文件:
函数文件, 单块(single-block):
READ(IUNIT) IMAX,JMAX,KMAX
READ(IUNIT) ((((F(I,J,K,M),I=1,IMAX),J=1,JMAX),K=1,KMAX),M=1,NFUN)

函数文件, 二维, 单块(single-block):
READ(IUNIT) IMAX,JMAX
READ(IUNIT) (((F(I,J,M),I=1,IMAX),J=1,JMAX),M=1,NFUN)

函数文件, 多块(multi-block):
READ(IUNIT) NBLOCK
READ(IUNIT) (IMAX(N),JMAX(N),KMAX(N),N=1,NBLOCK)
DO N=1,NBLOCK
READ(IUNIT) ((((F(I,J,K,M),I=1,IMAX(N)),J=1,JMAX(N)),K=1,KMAX(N)),M=1,NFUN)
ENDDO

函数名称文件:
函数名称文件是一ASCII文件,列有函数文件中数组变量的对应名称。以下为一例子:
density
pressure
u;velocity vector
v
w
temperature
turbulence energy
...
...

注意事项:
1 名称的数量和排列次序与函数文件中数组变量相同。
2 分割号 ";" 表示向量行的开始。";"之右为向量名,";"之左为X分量。其下两行为Y分量和Z分量。

http://www.grc.nasa.gov/WWW/wind/valid/plot3d.html
下面例子假设网格文件句柄为7,结果文件句柄为8。

2D, Whole, Formatted, Single-Block Grid and Solution

      parameter ( imax = 100 )
      parameter ( jmax = 100 )

      integer i
      integer j
      integer m
      integer n
      integer ni
      integer nj

      real mach   ! freestream Mach number
      real alpha ! freestream angle-of-attack
      real reyn   ! freestream Reynolds number
      real time   ! time

      real x(imax,jmax)
      real y(imax,jmax)

      real q(imax,jmax,4)

      open ( unit=7, form='formatted', file='2D.x' )
      open ( unit=8, form='formatted', file='2D.q' )

      read(7,*) ni, nj
      read(7,*)
     &    (( x(i,j), i=1,ni), j=1,nj),
     &    (( y(i,j), i=1,ni), j=1,nj)

      read(8,*) ni, nj
      read(8,*) mach, alpha, reyn, time
      read(8,*) ((( q(i,j,n), i=1,ni), j=1,nj), n=1,4)

3D, Whole, Unformatted, Multi-Block Grid and Solution

      parameter ( imax = 100 )
      parameter ( jmax = 100 )
      parameter ( kmax = 100 )
      parameter ( nbmax = 10 )

      integer i
      integer j
      integer m
      integer n
      integer nblocks
      integer ni (nbmax)
      integer nj (nbmax)
      integer nk (nbmax)

      real mach   ! freestream Mach number
      real alpha ! freestream angle-of-attack
      real reyn   ! freestream Reynolds number
      real time   ! time

      real x(imax,jmax,kmax,nbmax)
      real y(imax,jmax,kmax,nbmax)
      real z(imax,jmax,kmax,nbmax)

      real q(imax,jmax,kmax,nbmax,5)

      open ( unit=7, form='unformatted', file='3D.x' )
      open ( unit=8, form='unformatted', file='3D.q' )

      read(7) nblocks
      read(7) ( ni(m), nj(m), nk(m), m = 1, nblocks )
      do m = 1, nblocks
        read(7)
     &    ((( x(i,j,k,m), i=1,ni(m)), j=1,nj(m)), k=1,nk(m)),
     &    ((( y(i,j,k,m), i=1,ni(m)), j=1,nj(m)), k=1,nk(m)),
     &    ((( z(i,j,k,m), i=1,ni(m)), j=1,nj(m)), k=1,nk(m))
      enddo

      read(8) nblocks
      read(8) ( ni(m), nj(m), nk(m), m = 1, nblocks )
      do m = 1, nblocks
        read(8) mach, alpha, reyn, time
        read(8)
     &    (((( q(i,j,k,m,n), i=1,ni(m)), j=1,nj(m)), k=1,nk(m)), n=1,5)
      enddo

TECPLOT 的 PREPLOT 可以把 PLOT3D 文件转为 TECPLOT 格式。(没有测试)

20090526 add
由于后来发现可以用flow3d自带的命令行方式后处理提取数据,所以这个方法放弃。

一个简单的动态数据容器

能够动态的添加成员数据,目前只支持integer(4)和real(8)

 

! dynamic data type
! Qu Kun, April 2012
! 一个简单的动态数据结构容器,能够容纳INTEGER(4)和REAL(8)数据,维数范围为0到5
! 多个容器可链接成为链表
! 在链表中创建插入容器 dyd_new,指定数据类型、维数、指标范围和名称
! 获取容器指针 dyd_findnode 在链表中搜索指定名称的容器
! 释放容器内的数据空间 dyd_empty
! 开辟容器数据空间 dyd_construct
! 获取数据指针 dyd_getdata, 通过名称得到数据指针
!  
! 一般使用最常用的是 dyd_new和dyd_getdata
! dyd_new的使用方法,建议采用关键字方式指定参数
! 1 变量指定数组范围,range11,range12,range21,range22,...,range51,range52
!   CALL dyd_new(head=list, elementtype='integer(4)', dataname='X', ierr=ierr, &
!        range11=0,range12=9)
! 2 字符串指定数组范围
!   CALL dyd_new(head=list, elementtype='integer(4)', arrayrange='(0:9)',   &
!       dataname='X', ierr=ierr)
! 3 数组方式指定数组范围
! CALL dyd_new(head=list, atype=int4, adim=1,arange=irange, aname='X')
! 比较方便的是前2种
!
! 获取数据指针的方法为
! INTEGER(4),DIMENSION(:),POINTER :: X
! ...
! CALL getdata(list,'X', X)
! DO i=0,9;  X(i) = i; ENDDO


MODULE qkdynadata
IMPLICIT NONE
INTEGER,PARAMETER,PRIVATE :: dyd_maxdim=5,dyd_namelen=32
INTEGER,PARAMETER,PRIVATE :: int4=1,real8=2
TYPE dynadata
  INTEGER :: mdim=-1
  INTEGER :: mrange(2,dyd_maxdim)=-1
  INTEGER :: metype=-1  ! data type of the element, integer(4), real(8),real(4)
  CHARACTER(LEN=dyd_namelen) mname
 
  INTEGER(4),POINTER :: mint4d0p=>NULL()
  INTEGER(4),POINTER,DIMENSION(:) :: mint4d1p=>NULL()
  INTEGER(4),POINTER,DIMENSION(:,:) :: mint4d2p=>NULL()
  INTEGER(4),POINTER,DIMENSION(:,:,:) :: mint4d3p=>NULL()
  INTEGER(4),POINTER,DIMENSION(:,:,:,:) :: mint4d4p=>NULL()
  INTEGER(4),POINTER,DIMENSION(:,:,:,:,:) :: mint4d5p=>NULL()
 
  REAL(8),POINTER :: mreal8d0p=>NULL()
  REAL(8),POINTER,DIMENSION(:) :: mreal8d1p=>NULL()
  REAL(8),POINTER,DIMENSION(:,:) :: mreal8d2p=>NULL()
  REAL(8),POINTER,DIMENSION(:,:,:) :: mreal8d3p=>NULL()
  REAL(8),POINTER,DIMENSION(:,:,:,:) :: mreal8d4p=>NULL()
  REAL(8),POINTER,DIMENSION(:,:,:,:,:) :: mreal8d5p=>NULL()
 
  !pointer for inner dynamic data member
  TYPE(dynadata),POINTER :: mdynadata
 
  ! pointer for linklist
  TYPE(dynadata),POINTER :: mprev,mnext,mhead
 
END TYPE
 
 
INTERFACE getdata
  MODULE PROCEDURE getdata_int4p0
  MODULE PROCEDURE getdata_int4p1
  MODULE PROCEDURE getdata_int4p2
  MODULE PROCEDURE getdata_int4p3
  MODULE PROCEDURE getdata_int4p4
  MODULE PROCEDURE getdata_int4p5
  MODULE PROCEDURE getdata_real8p0
  MODULE PROCEDURE getdata_real8p1
  MODULE PROCEDURE getdata_real8p2
  MODULE PROCEDURE getdata_real8p3
  MODULE PROCEDURE getdata_real8p4
  MODULE PROCEDURE getdata_real8p5
END INTERFACE
 
CONTAINS
 
SUBROUTINE getdata_int4p0(head,aname, dp)
  INTEGER(4),POINTER :: dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
  IF(ASSOCIATED(iter)) dp => iter%mint4d0p
END SUBROUTINE
 
SUBROUTINE getdata_int4p1(head,aname,dp)
  INTEGER(4),DIMENSION(:),POINTER ::dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
 ! WRITE(*,*) iter%mname
  dp => iter%mint4d1p
END SUBROUTINE
 
SUBROUTINE getdata_int4p2(head,aname,dp)
  INTEGER(4),DIMENSION(:,:),POINTER ::dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
  dp => iter%mint4d2p
END SUBROUTINE
 
 
SUBROUTINE getdata_int4p3(head,aname,dp)
  INTEGER(4),DIMENSION(:,:,:),POINTER ::dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
  dp => iter%mint4d3p
END SUBROUTINE
 
 
SUBROUTINE getdata_int4p4(head,aname,dp)
  INTEGER(4),DIMENSION(:,:,:,:),POINTER ::dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
  dp => iter%mint4d4p
END SUBROUTINE
 
 
SUBROUTINE getdata_int4p5(head,aname,dp)
  INTEGER(4),DIMENSION(:,:,:,:,:),POINTER ::dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
  dp => iter%mint4d5p
END SUBROUTINE
 
 
 
 
 
 
 
SUBROUTINE getdata_real8p0(head,aname, dp)
  REAL(8),POINTER :: dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
  dp => iter%mreal8d0p
END SUBROUTINE
 
SUBROUTINE getdata_real8p1(head,aname,dp)
  REAL(8),DIMENSION(:),POINTER ::dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
  dp => iter%mreal8d1p
END SUBROUTINE
 
SUBROUTINE getdata_real8p2(head,aname,dp)
  REAL(8),DIMENSION(:,:),POINTER ::dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
  dp => iter%mreal8d2p
END SUBROUTINE
 
 
SUBROUTINE getdata_real8p3(head,aname,dp)
  REAL(8),DIMENSION(:,:,:),POINTER ::dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
  dp => iter%mreal8d3p
END SUBROUTINE
 
 
SUBROUTINE getdata_real8p4(head,aname,dp)
  REAL(8),DIMENSION(:,:,:,:),POINTER ::dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
  dp => iter%mreal8d4p
END SUBROUTINE
 
 
SUBROUTINE getdata_real8p5(head,aname,dp)
  REAL(8),DIMENSION(:,:,:,:,:),POINTER ::dp
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
  NULLIFY(dp)
  iter => dyd_findnode(head,aname)
  dp => iter%mreal8d5p
END SUBROUTINE
 
 
 
 
SUBROUTINE dyd_empty(this)
  TYPE(dynadata),INTENT(INOUT) :: this
  ! local
  LOGICAL fk
  INTEGER ierr
  this%mdim=-1; this%mrange=-1; this%metype=-1; this%mname=''
 
  NULLIFY(this%mdynadata)
  NULLIFY(this%mprev)
  NULLIFY(this%mnext)
  NULLIFY(this%mhead)
  IF(ASSOCIATED(this%mint4d0p)) THEN
    DEALLOCATE(this%mint4d0p,STAT=ierr);    NULLIFY(this%mint4d0p)
  ENDIF 
   
 
  IF(ASSOCIATED(this%mint4d1p)) THEN
    DEALLOCATE(this%mint4d1p,STAT=ierr)
    NULLIFY(this%mint4d1p)
  ENDIF
 
  IF(ASSOCIATED(this%mint4d2p)) THEN
    DEALLOCATE(this%mint4d2p,STAT=ierr)
    NULLIFY(this%mint4d2p)
  ENDIF
   
  IF(ASSOCIATED(this%mint4d3p)) THEN
    DEALLOCATE(this%mint4d3p,STAT=ierr)
    NULLIFY(this%mint4d3p)
  ENDIF
  IF(ASSOCIATED(this%mint4d4p)) THEN
    DEALLOCATE(this%mint4d4p,STAT=ierr)
    NULLIFY(this%mint4d4p)
  ENDIF
   
  IF(ASSOCIATED(this%mint4d5p)) THEN
    DEALLOCATE(this%mint4d5p,STAT=ierr)
    NULLIFY(this%mint4d5p)
  ENDIF
 
  IF(ASSOCIATED(this%mreal8d0p)) THEN
    DEALLOCATE(this%mreal8d0p,STAT=ierr); NULLIFY(this%mreal8d0p)
  ENDIF
 
  IF(ASSOCIATED(this%mreal8d1p)) THEN
    DEALLOCATE(this%mreal8d1p,STAT=ierr); NULLIFY(this%mreal8d1p)
  ENDIF
   
  IF(ASSOCIATED(this%mreal8d2p)) THEN
    DEALLOCATE(this%mreal8d2p,STAT=ierr); NULLIFY(this%mreal8d2p)
  ENDIF
   
  IF(ASSOCIATED(this%mreal8d3p)) THEN
    DEALLOCATE(this%mreal8d3p,STAT=ierr); NULLIFY(this%mreal8d3p)
  ENDIF
   
  IF(ASSOCIATED(this%mreal8d4p)) THEN
    DEALLOCATE(this%mreal8d4p,STAT=ierr); NULLIFY(this%mreal8d4p)
  ENDIF
  IF(ASSOCIATED(this%mreal8d5p)) THEN
    DEALLOCATE(this%mreal8d5p,STAT=ierr); NULLIFY(this%mreal8d5p)
  ENDIF
 
END SUBROUTINE
 
 
 
 
 
SUBROUTINE dyd_new(head,elementtype, dataname, ierr,  &
          range11, range12,range21, range22,range31, range32, &
          range41, range42,range51, range52)
  TYPE(dynadata),POINTER,INTENT(INOUT) :: head
  CHARACTER(LEN=*),INTENT(IN) :: elementtype, dataname
  INTEGER,INTENT(IN),OPTIONAL :: range11, range12,range21, range22,  &
          range31, range32, range41, range42,range51, range52
  INTEGER,INTENT(OUT) :: ierr
  ! local
  INTEGER :: atype,adim
  INTEGER :: arange(2,10)
  TYPE(dynadata),POINTER :: pdyd
  CHARACTER(LEN=32) :: tstr
  
  ierr=0
  
  IF(.NOT.dyd_isvalidname(head,dataname)) THEN
   ierr=1
   RETURN
  ENDIF
  
  ! get type
  tstr = TRIM(elementtype)
  CALL  upper_case(tstr)
  IF(tstr=='INTEGER(4)') THEN;    atype=int4
  ELSEIF(tstr=='REAL(8)') THEN;   atype=real8
  ELSE
    ierr=2
    RETURN
  ENDIF
  
  ! get
  adim=0
  IF( PRESENT(range11) .AND. PRESENT(range12) ) THEN
    IF(range11>=range12) THEN
      WRITE(*,*) 'Invalid range'; ierr=3
      RETURN
    ENDIF
    adim=1; arange(1,1)=range11; arange(2,1)=range12
    ! DIM 2
    IF( PRESENT(range21) .AND. PRESENT(range22) ) THEN
      IF(range21>=range22) THEN
        WRITE(*,*) 'Invalid range'; ierr=3
      RETURN
      ENDIF
      adim=2; arange(1,2)=range21; arange(2,2)=range22
      ! DIM 3
      IF( PRESENT(range31) .AND. PRESENT(range32) ) THEN
        IF(range31>=range32) THEN
          WRITE(*,*) 'Invalid range'; ierr=3
          RETURN
        ENDIF
        adim=3; arange(1,3)=range31; arange(2,3)=range32
        ! DIM 4
        IF( PRESENT(range41) .AND. PRESENT(range42) ) THEN
          IF(range41>=range42) THEN
            WRITE(*,*) 'Invalid range'; ierr=3
            RETURN
          ENDIF
          adim=4; arange(1,4)=range41; arange(2,4)=range42
          ! DIM 5
          IF( PRESENT(range51) .AND. PRESENT(range52) ) THEN
            IF(range51>=range52) THEN
              WRITE(*,*) 'Invalid range'; ierr=3
              RETURN
            ENDIF
            adim=5; arange(1,5)=range51; arange(2,5)=range52
            ENDIF
          ENDIF
      ENDIF
    ENDIF
  ENDIF
 
  !WRITE(*,*) 'dyd_new ',atype,adim,arange(:,1:adim),dataname 
  CALL dyd_new_0(head,atype,adim,arange,dataname)
END SUBROUTINE
 
 
 
 
SUBROUTINE dyd_new_1(head,elementtype, arrayrange, dataname, ierr)
  TYPE(dynadata),POINTER,INTENT(INOUT) :: head
  CHARACTER(LEN=*),INTENT(IN) :: elementtype, arrayrange,dataname
  INTEGER,INTENT(OUT) :: ierr
  ! local
  INTEGER :: atype,offset,suboffset,i,adim
  INTEGER :: arange(2,10), loc(20),com(10)
  TYPE(dynadata),POINTER :: pdyd
  CHARACTER(LEN=32) :: tstr

  !WRITE(*,*) 'new1 ',dataname
 
  ierr=0
  
  IF(.NOT.dyd_isvalidname(head,dataname)) THEN
   ierr=1
   RETURN
  ENDIF
  
  ! get type
  tstr = TRIM(elementtype)
  CALL  upper_case(tstr)
  IF(tstr=='INTEGER(4)') THEN;    atype=int4
  ELSEIF(tstr=='REAL(8)') THEN;   atype=real8
  ELSE
    ierr=2
    RETURN
  ENDIF
  
  ! get
  adim=0; offset=1
  DO
    suboffset = INDEX(arrayrange(offset:),':')
    IF(suboffset==0) EXIT
    adim = adim+1
    IF(adim>5) STOP
    offset = offset+suboffset
  ENDDO
  !WRITE(*,*) 'adim=',adim,'   ',arrayrange
  
  IF(adim>0) THEN
      loc(1) = INDEX(arrayrange,'(')
      loc(adim+1) = INDEX(arrayrange,')')
      com(1) = INDEX(arrayrange,':')
      IF(adim>1) THEN
      DO i=2,adim
        loc(i) = loc(i-1)+INDEX(arrayrange(loc(i-1)+1:),',')
        !write(*,*) loc(i),'   ',arrayrange(loc(i-1)+1:)
        com(i) = loc(i)+INDEX(arrayrange(loc(i)+1:),':')
        !write(*,*) com(i),'   ',arrayrange(loc(i)+1:)
      ENDDO
      ENDIF
      write(*,*) loc(1:adim+1)
      write(*,*) com(1:adim)
      DO i=1,adim
        READ( arrayrange(loc(i)+1 : com(i)-1  ),  *)  arange(1,i)
        READ( arrayrange(com(i)+1 : loc(i+1)-1),  *)  arange(2,i)
      ENDDO
  ENDIF
  
  CALL dyd_new_0(head,atype,adim,arange,dataname)
  !NULLIFY(pdyd)
  !ALLOCATE(pdyd)
  !CALL dyd_construct(pdyd, atype,adim,arange,dataname)
  !CALL dyd_insert(pdyd,head)
END SUBROUTINE
 
 
SUBROUTINE dyd_new_0(head,atype,adim,arange,aname)
  TYPE(dynadata),POINTER,INTENT(INOUT) :: head
  INTEGER,INTENT(IN) :: atype,adim
  INTEGER,INTENT(IN),OPTIONAL :: arange(2,adim)
  CHARACTER(LEN=*),INTENT(IN) :: aname
  ! local
  TYPE(dynadata),POINTER :: pdyd

 
  NULLIFY(pdyd)
  IF(dyd_isvalidname(head,aname)) THEN
    ALLOCATE(pdyd)
    CALL dyd_construct(pdyd, atype,adim,arange,aname)
    CALL dyd_insert(pdyd,head)
  ENDIF
END SUBROUTINE
 
 
 
 
SUBROUTINE dyd_construct(this,atype,adim,arange,aname)
  TYPE(dynadata),INTENT(INOUT) :: this
  INTEGER,INTENT(IN) :: atype,adim
  INTEGER,INTENT(IN),OPTIONAL :: arange(2,adim)
  CHARACTER(LEN=*),INTENT(IN) :: aname
  !
  INTEGER i
 
  CALL dyd_empty(this)
  IF(atype<=0 .OR. atype>2) THEN
    WRITE(*,*) 'Invalid type: ',atype
    STOP
  ENDIF
 
  IF(adim<0) THEN
    WRITE(*,*) 'Invalid dim: ',adim
    STOP
  ENDIF
 
  IF(adim>0) THEN;  DO i=1,adim
    IF(arange(1,i)>arange(2,i)) THEN
      WRITE(*,*) 'Invalid range: ',arange(1:2,i), ' in DIM ',i
      STOP
    ENDIF
  ENDDO;  ENDIF
 
  this%mname = aname
  this%metype=atype
  this%mdim=adim
  IF(adim>0) this%mrange(1:2,1:adim) = arange(1:2,1:adim)
 
  SELECT CASE(this%metype)
    CASE (int4)
       IF(this%mdim==0) THEN
         ALLOCATE(this%mint4d0p)
       ENDIF
       IF(this%mdim==1) THEN
         ALLOCATE(this%mint4d1p(this%mrange(1,1):this%mrange(2,1) ) )
       ENDIF
       IF(this%mdim==2) THEN
         ALLOCATE(this%mint4d2p(this%mrange(1,1):this%mrange(2,1), &
                                this%mrange(1,2):this%mrange(2,2) ) )
       ENDIF
       IF(this%mdim==3) THEN
         ALLOCATE(this%mint4d3p(this%mrange(1,1):this%mrange(2,1), &
                                this%mrange(1,2):this%mrange(2,2), &
                                this%mrange(1,3):this%mrange(2,3) ) )
       ENDIF
       IF(this%mdim==4) THEN
         ALLOCATE(this%mint4d4p(this%mrange(1,1):this%mrange(2,1), &
                                this%mrange(1,2):this%mrange(2,2), &
                                this%mrange(1,3):this%mrange(2,3), &
                                this%mrange(1,4):this%mrange(2,4) ) )
       ENDIF
       IF(this%mdim==5) THEN
         ALLOCATE(this%mint4d5p(this%mrange(1,1):this%mrange(2,1), &
                                this%mrange(1,2):this%mrange(2,2), &
                                this%mrange(1,3):this%mrange(2,3), &
                                this%mrange(1,4):this%mrange(2,4), &
                                this%mrange(1,5):this%mrange(2,5) ) )
       ENDIF
    CASE (real8)
       IF(this%mdim==0) THEN
         ALLOCATE(this%mreal8d0p)
       ENDIF
       IF(this%mdim==1) THEN
         ALLOCATE(this%mreal8d1p(this%mrange(1,1):this%mrange(2,1) ) )
       ENDIF
       IF(this%mdim==2) THEN
         ALLOCATE(this%mreal8d2p(this%mrange(1,1):this%mrange(2,1), &
                                 this%mrange(1,2):this%mrange(2,2) ) )
       ENDIF
       IF(this%mdim==3) THEN
         ALLOCATE(this%mreal8d3p(this%mrange(1,1):this%mrange(2,1), &
                                 this%mrange(1,2):this%mrange(2,2), &
                                 this%mrange(1,3):this%mrange(2,3) ) )
       ENDIF
       IF(this%mdim==4) THEN
         ALLOCATE(this%mreal8d4p(this%mrange(1,1):this%mrange(2,1), &
                                 this%mrange(1,2):this%mrange(2,2), &
                                 this%mrange(1,3):this%mrange(2,3), &
                                 this%mrange(1,4):this%mrange(2,4) ) )
       ENDIF
       IF(this%mdim==5) THEN
         ALLOCATE(this%mreal8d5p(this%mrange(1,1):this%mrange(2,1), &
                                 this%mrange(1,2):this%mrange(2,2), &
                                 this%mrange(1,3):this%mrange(2,3), &
                                 this%mrange(1,4):this%mrange(2,4), &
                                 this%mrange(1,5):this%mrange(2,5) ) )
       ENDIF
  END SELECT
END SUBROUTINE
 
 
 
SUBROUTINE dyd_insert(this,head)
  TYPE(dynadata),POINTER,INTENT(INOUT) :: this
  TYPE(dynadata),POINTER,INTENT(INOUT) :: head
  !
  TYPE(dynadata),POINTER :: tail
  IF( ASSOCIATED(head) ) THEN
    CALL dyd_gettail(head,tail)
    !WRITE(*,*) 'Tail name is ',TRIM(tail%mname)
    this%mprev => tail
    this%mhead => head
    tail%mnext => this
    NULLIFY(this%mnext)
  ELSE
    head => this
    this%mprev => NULL()
    this%mhead => this
    this%mnext => NULL()
  ENDIF
END SUBROUTINE
 
SUBROUTINE dyd_gettail(this,tail)
  TYPE(dynadata),POINTER,INTENT(IN) :: this
  TYPE(dynadata),POINTER,INTENT(OUT) :: tail
 
  IF(ASSOCIATED(this)) THEN
    tail => this
    DO WHILE( ASSOCIATED(tail%mnext) )
      tail => tail%mnext
    END DO
  ENDIF
 
END SUBROUTINE
 
 
FUNCTION  dyd_isvalidname(head,aname)
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  LOGICAL dyd_isvalidname
  !
  TYPE(dynadata),POINTER :: iter
 
  dyd_isvalidname = .TRUE.
  IF( ASSOCIATED(head) ) THEN
    iter=>head
    DO WHILE( ASSOCIATED(iter%mnext) )
    !WRITE(*,*) TRIM(aname), '  ',TRIM(iter%mname)
    !READ(*,*)
    IF(TRIM(aname)==TRIM(iter%mname)) THEN
      dyd_isvalidname = .FALSE.
      EXIT
    ENDIF
    iter => iter%mnext
    END DO
  ENDIF
END FUNCTIOn
 
FUNCTION dyd_findnode(head,aname)
  TYPE(dynadata),POINTER,INTENT(IN) :: head
  CHARACTER(LEN=*),INTENT(IN) :: aname
  TYPE(dynadata),POINTER :: dyd_findnode
  !
  TYPE(dynadata),POINTER :: iter=>NULL()
 
  NULLIFY(dyd_findnode)
  IF(.NOT.ASSOCIATED(head)) RETURN
  iter=>head
  loop: DO
    IF(TRIM(aname)==TRIM(iter%mname)) THEN
      dyd_findnode => iter   ! 找到
      EXIT loop
    ENDIF
    IF(.NOT.ASSOCIATED(iter%mnext)) THEN
      EXIT loop              ! 队列结束,没找到
    ELSE
      iter=>iter%mnext
    ENDIF
  END DO loop
   
END FUNCTION
 
 
 
 
! other
elemental subroutine upper_case(word)
! convert a word to lower case
character (len=*) , intent(in out) :: word
integer :: i,ic,nlen
nlen = len(word)
do i=1,nlen
   ic = ichar(word(i:i))
   if (ic >= 97 .and. ic < 122) word(i:i) = char(ic-32)
end do
end subroutine upper_case


 
END MODULE
 
 

 

测试代码如下

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
SUBROUTINE TEST_int4d0
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  INTEGER(4),POINTER :: X
  INTEGER ::ierr
 
   
  !CALL dyd_new(head=list, atype=int4, adim=1,arange=irange, aname='X')
  !CALL dyd_new(head=list, elementtype='integer(4)', arrayrange='(0:9)',   &
  !     dataname='X', ierr=ierr)
  CALL dyd_new(head=list, elementtype='integer(4)', dataname='X', ierr=ierr)
  CALL getdata(list,'X', X)
 
  iter => dyd_findnode(head=list,aname='X'); !X => iter%mint4d1p
  WRITE(*,*) X
  X = 5
  WRITE(*,*)iter%mint4d0p
 
  CALL dyd_empty(iter)
END  SUBROUTINE
 
 
SUBROUTINE TEST_int4d1
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  INTEGER(4),DIMENSION(:),POINTER :: X
  INTEGER ::i, irange(2,2),ierr
  irange(1,1) =0; irange(2,1) =9
   
  !CALL dyd_new(head=list, atype=int4, adim=1,arange=irange, aname='X')
  !CALL dyd_new(head=list, elementtype='integer(4)', arrayrange='(0:9)',   &
  !     dataname='X', ierr=ierr)
  CALL dyd_new(head=list, elementtype='integer(4)', dataname='X', ierr=ierr, &
       range11=0,range12=9)
  CALL getdata(list,'X', X)
 
  iter => dyd_findnode(head=list,aname='X'); !X => iter%mint4d1p
  WRITE(*,*) X
  WRITE(*,*) SHAPE(X),LBOUND(X),UBOUND(X)
  X = 5
  DO i=0,9;  X(i) = i; ENDDO
  WRITE(*,*)iter%mint4d1p
 
  CALL dyd_empty(iter)
END  SUBROUTINE


SUBROUTINE TEST_int4d2
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  INTEGER(4),DIMENSION(:,:),POINTER :: X
  INTEGER ::i,j,k, irange(2,2),ierr
  irange(1,1) =0; irange(2,1) =9
  irange(1,2) =1; irange(2,2) =5
  !CALL dyd_new(head=list, atype=int4, adim=1,arange=irange, aname='X')
  !CALL dyd_new(head=list, elementtype='integer(4)', arrayrange='(0:9)',   &
  !     dataname='X', ierr=ierr)
  CALL dyd_new(head=list, elementtype='integer(4)', dataname='X', ierr=ierr, &
       range11=0,range12=9,range21=1,range22=5)
  CALL getdata(list,'X', X)

  iter => dyd_findnode(head=list,aname='X'); !X => iter%mint4d1p
  WRITE(*,*) X
  WRITE(*,*) 'SHAPE(X)=',SHAPE(X),'LBOUND(X)=',LBOUND(X),'UBOUND(X)=',UBOUND(X)
  k=1
  DO j=1,5;DO i=0,9; X(i,j) = k; k=k+1; ENDDO;ENDDO
  WRITE(*,*)iter%mint4d2p

  CALL dyd_empty(iter)
END  SUBROUTINE
 

SUBROUTINE TEST_int4d3
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  INTEGER(4),DIMENSION(:,:,:),POINTER :: X
  INTEGER ::i,j,k,l,m,n, irange(2,3),ierr
  irange(1,1) =0; irange(2,1) =9
  irange(1,2) =1; irange(2,2) =5
  irange(1,3) =1; irange(2,3) =3
  !CALL dyd_new(head=list, atype=int4, adim=3,arange=irange, aname='X')
  CALL dyd_new(head=list, elementtype='integer(4)', arrayrange='(0:9,1:5,1:3)',   &
       dataname='X', ierr=ierr)
  !CALL dyd_new(head=list, elementtype='integer(4)', dataname='X', ierr=ierr, &
  !     range11=0,range12=9,range21=1,range22=5,range31=1,range32=3)
  CALL getdata(list,'X', X)

  iter => dyd_findnode(head=list,aname='X'); !X => iter%mint4d1p
  WRITE(*,*) X
  WRITE(*,*) 'SHAPE(X)=',SHAPE(X),'LBOUND(X)=',LBOUND(X),'UBOUND(X)=',UBOUND(X)
  k=1
  DO l=1,3; DO j=1,5;DO i=0,9
    X(i,j,l) = k; k=k+1
  ENDDO;ENDDO;ENDDO
  WRITE(*,*)iter%mint4d3p

  CALL dyd_empty(iter)
END  SUBROUTINE



SUBROUTINE TEST_int4d4
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  INTEGER(4),DIMENSION(:,:,:,:),POINTER :: X
  INTEGER ::i,j,k,l,m,n, irange(2,4),ierr
  irange(1,1) =0; irange(2,1) =2
  irange(1,2) =1; irange(2,2) =5
  irange(1,3) =1; irange(2,3) =3
  irange(1,4) =-1; irange(2,4) =1
  CALL dyd_new(head=list, atype=int4, adim=4,arange=irange, aname='X')
  !CALL dyd_new(head=list, elementtype='integer(4)', arrayrange='(0:9,1:5,1:3)',   &
  !     dataname='X', ierr=ierr)
  !CALL dyd_new(head=list, elementtype='integer(4)', dataname='X', ierr=ierr, &
  !     range11=0,range12=9,range21=1,range22=5,range31=1,range32=3)
  CALL getdata(list,'X', X)

  iter => dyd_findnode(head=list,aname='X'); !X => iter%mint4d1p
  WRITE(*,*) X
  WRITE(*,*) 'SHAPE(X)=',SHAPE(X),'LBOUND(X)=',LBOUND(X),'UBOUND(X)=',UBOUND(X)
  k=1
  DO m=irange(1,4), irange(2,4)
  DO l=irange(1,3), irange(2,3)
  DO j=irange(1,2), irange(2,2)
  DO i=irange(1,1), irange(2,1)
    X(i,j,l,m) = k; k=k+1
  ENDDO;ENDDO;ENDDO;ENDDO
  WRITE(*,*)iter%mint4d4p

  CALL dyd_empty(iter)
END  SUBROUTINE


SUBROUTINE TEST_int4d5
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  INTEGER(4),DIMENSION(:,:,:,:,:),POINTER :: X
  INTEGER ::i,j,k,l,m,n, irange(2,5),ierr
  irange(1,1) =0; irange(2,1) =2
  irange(1,2) =1; irange(2,2) =5
  irange(1,3) =1; irange(2,3) =3
  irange(1,4) =-1; irange(2,4) =1
  irange(1,5) =5; irange(2,5) =8
  !CALL dyd_new(head=list, atype=int4, adim=5,arange=irange, aname='X')
  CALL dyd_new(head=list, elementtype='integer(4)', arrayrange='(0:2,1:5,1:3,-1:1,5:8)',   &
       dataname='X', ierr=ierr)
  !CALL dyd_new(head=list, elementtype='integer(4)', dataname='X', ierr=ierr, &
  !     range11=0,range12=9,range21=1,range22=5,range31=1,range32=3)
  CALL getdata(list,'X', X)

  iter => dyd_findnode(head=list,aname='X'); !X => iter%mint4d1p
  !WRITE(*,*) X
  WRITE(*,*) 'SHAPE(X)=',SHAPE(X),'LBOUND(X)=',LBOUND(X),'UBOUND(X)=',UBOUND(X)
  k=1
  DO n=irange(1,5), irange(2,5)
  DO m=irange(1,4), irange(2,4)
  DO l=irange(1,3), irange(2,3)
  DO j=irange(1,2), irange(2,2)
  DO i=irange(1,1), irange(2,1)
    X(i,j,l,m,n) = k; k=k+1
  ENDDO;ENDDO;ENDDO;ENDDO;ENDDO
  WRITE(*,*)iter%mint4d5p

  CALL dyd_empty(iter)
END  SUBROUTINE


SUBROUTINE TEST_real8d0
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  REAL(8),POINTER :: X
  INTEGER ::ierr
 
   
  !CALL dyd_new(head=list, atype=real8, adim=1,arange=irange, aname='X')
  !CALL dyd_new(head=list, elementtype='REAL(8)', arrayrange='(0:9)',   &
  !     dataname='X', ierr=ierr)
  CALL dyd_new(head=list, elementtype='REAL(8)', dataname='X', ierr=ierr)
  CALL getdata(list,'X', X)
 
  iter => dyd_findnode(head=list,aname='X'); !X => iter%mreal8d1p
  !WRITE(*,*) X
  X = 5
  WRITE(*,*)iter%mreal8d0p
 
  CALL dyd_empty(iter)
END  SUBROUTINE
 
 
SUBROUTINE TEST_real8d1
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  REAL(8),DIMENSION(:),POINTER :: X
  INTEGER ::i, irange(2,2),ierr
  irange(1,1) =0; irange(2,1) =9
   
  !CALL dyd_new(head=list, atype=real8, adim=1,arange=irange, aname='X')
  !CALL dyd_new(head=list, elementtype='REAL(8)', arrayrange='(0:9)',   &
  !     dataname='X', ierr=ierr)
  CALL dyd_new(head=list, elementtype='REAL(8)', dataname='X', ierr=ierr, &
       range11=0,range12=9)
  CALL getdata(list,'X', X)
 
  iter => dyd_findnode(head=list,aname='X'); !X => iter%mreal8d1p
  !WRITE(*,*) X
  WRITE(*,*) SHAPE(X),LBOUND(X),UBOUND(X)
  X = 5
  DO i=0,9;  X(i) = i; ENDDO
  WRITE(*,*)iter%mreal8d1p
 
  CALL dyd_empty(iter)
END  SUBROUTINE


SUBROUTINE TEST_real8d2
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  REAL(8),DIMENSION(:,:),POINTER :: X
  INTEGER ::i,j,k, irange(2,2),ierr
  irange(1,1) =0; irange(2,1) =9
  irange(1,2) =1; irange(2,2) =5
  !CALL dyd_new(head=list, atype=real8, adim=1,arange=irange, aname='X')
  !CALL dyd_new(head=list, elementtype='REAL(8)', arrayrange='(0:9)',   &
  !     dataname='X', ierr=ierr)
  CALL dyd_new(head=list, elementtype='REAL(8)', dataname='X', ierr=ierr, &
       range11=0,range12=9,range21=1,range22=5)
  CALL getdata(list,'X', X)

  iter => dyd_findnode(head=list,aname='X'); !X => iter%mreal8d1p
  !WRITE(*,*) X
  WRITE(*,*) 'SHAPE(X)=',SHAPE(X),'LBOUND(X)=',LBOUND(X),'UBOUND(X)=',UBOUND(X)
  k=1
  DO j=1,5;DO i=0,9; X(i,j) = k; k=k+1; ENDDO;ENDDO
  WRITE(*,*)iter%mreal8d2p

  CALL dyd_empty(iter)
END  SUBROUTINE
 

SUBROUTINE TEST_real8d3
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  REAL(8),DIMENSION(:,:,:),POINTER :: X
  INTEGER ::i,j,k,l,m,n, irange(2,3),ierr
  irange(1,1) =0; irange(2,1) =9
  irange(1,2) =1; irange(2,2) =5
  irange(1,3) =1; irange(2,3) =3
  !CALL dyd_new(head=list, atype=real8, adim=3,arange=irange, aname='X')
  CALL dyd_new(head=list, elementtype='REAL(8)', arrayrange='(0:9,1:5,1:3)',   &
       dataname='X', ierr=ierr)
  !CALL dyd_new(head=list, elementtype='REAL(8)', dataname='X', ierr=ierr, &
  !     range11=0,range12=9,range21=1,range22=5,range31=1,range32=3)
  CALL getdata(list,'X', X)

  iter => dyd_findnode(head=list,aname='X'); !X => iter%mreal8d1p
  !WRITE(*,*) X
  WRITE(*,*) 'SHAPE(X)=',SHAPE(X),'LBOUND(X)=',LBOUND(X),'UBOUND(X)=',UBOUND(X)
  k=1
  DO l=1,3; DO j=1,5;DO i=0,9
    X(i,j,l) = k; k=k+1
  ENDDO;ENDDO;ENDDO
  WRITE(*,*)iter%mreal8d3p

  CALL dyd_empty(iter)
END  SUBROUTINE



SUBROUTINE TEST_real8d4
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  REAL(8),DIMENSION(:,:,:,:),POINTER :: X
  INTEGER ::i,j,k,l,m,n, irange(2,4),ierr
  irange(1,1) =0; irange(2,1) =2
  irange(1,2) =1; irange(2,2) =5
  irange(1,3) =1; irange(2,3) =3
  irange(1,4) =-1; irange(2,4) =1
  CALL dyd_new(head=list, atype=real8, adim=4,arange=irange, aname='X')
  !CALL dyd_new(head=list, elementtype='REAL(8)', arrayrange='(0:9,1:5,1:3)',   &
  !     dataname='X', ierr=ierr)
  !CALL dyd_new(head=list, elementtype='REAL(8)', dataname='X', ierr=ierr, &
  !     range11=0,range12=9,range21=1,range22=5,range31=1,range32=3)
  CALL getdata(list,'X', X)

  iter => dyd_findnode(head=list,aname='X'); !X => iter%mreal8d1p
  !WRITE(*,*) X
  WRITE(*,*) 'SHAPE(X)=',SHAPE(X),'LBOUND(X)=',LBOUND(X),'UBOUND(X)=',UBOUND(X)
  k=1
  DO m=irange(1,4), irange(2,4)
  DO l=irange(1,3), irange(2,3)
  DO j=irange(1,2), irange(2,2)
  DO i=irange(1,1), irange(2,1)
    X(i,j,l,m) = k; k=k+1
  ENDDO;ENDDO;ENDDO;ENDDO
  WRITE(*,*)iter%mreal8d4p

  CALL dyd_empty(iter)
END  SUBROUTINE


SUBROUTINE TEST_real8d5
  USE xx
  IMPLICIT NONE
  TYPE(dynadata),POINTER :: list=>NULL(),iter=>NULL()
  REAL(8),DIMENSION(:,:,:,:,:),POINTER :: X
  INTEGER ::i,j,k,l,m,n, irange(2,5),ierr
  irange(1,1) =0; irange(2,1) =2
  irange(1,2) =1; irange(2,2) =5
  irange(1,3) =1; irange(2,3) =3
  irange(1,4) =-1; irange(2,4) =1
  irange(1,5) =5; irange(2,5) =8
  !CALL dyd_new(head=list, atype=real8, adim=5,arange=irange, aname='X')
  CALL dyd_new(head=list, elementtype='REAL(8)', arrayrange='(0:2,1:5,1:3,-1:1,5:8)',   &
       dataname='X', ierr=ierr)
  !CALL dyd_new(head=list, elementtype='REAL(8)', dataname='X', ierr=ierr, &
  !     range11=0,range12=9,range21=1,range22=5,range31=1,range32=3)
  CALL getdata(list,'X', X)

  iter => dyd_findnode(head=list,aname='X'); !X => iter%mreal8d1p
  !WRITE(*,*) X
  WRITE(*,*) 'SHAPE(X)=',SHAPE(X),'LBOUND(X)=',LBOUND(X),'UBOUND(X)=',UBOUND(X)
  k=1
  DO n=irange(1,5), irange(2,5)
  DO m=irange(1,4), irange(2,4)
  DO l=irange(1,3), irange(2,3)
  DO j=irange(1,2), irange(2,2)
  DO i=irange(1,1), irange(2,1)
    X(i,j,l,m,n) = k; k=k+1
  ENDDO;ENDDO;ENDDO;ENDDO;ENDDO
  WRITE(*,*)iter%mreal8d5p

  CALL dyd_empty(iter)
  
  
  
  
END  SUBROUTINE

 
 
PROGRAM TEST
  IMPLICIT NONE
!  CALL TEST_int4d0
!  CALL TEST_int4d1
!  CALL TEST_int4d2
!  CALL TEST_int4d3
!  CALL TEST_int4d4
!  CALL TEST_int4d5

  CALL TEST_real8d0
  CALL TEST_real8d1
  CALL TEST_real8d2
  CALL TEST_real8d3
  CALL TEST_real8d4
  CALL TEST_real8d5
  
END

 

FEM相关

SUPG中的稳定项是二阶偏导,人工耗散系数与ah成正比,a是特征速度,h是网格尺度。

JST中心差分的稳定项是四阶偏导。

因此我以为JST中心差分的稳定项的阶段误差更低。

但是仔细想想,JST人工耗散系数是谱半径成正比,考虑到除单元体积,则相当于aA/Vol,其中A/Vol就是网格尺度h。因此,SUPG的人工耗散系数和Jameson中心差分的是一样。只是梯度阶数不一样,一个是二阶,一个是四阶。但是两者带来截断误差都是O(h)。

 

 

扫了一眼开发者的博士论文论文,LM的网格存储没有按照分区进行完全分布式存储,而是每个进程都保留全部网格,这样就限制了并行的规模。作者当时进行的最大规模并行计算是400个进程。相比而言,DII的并行能力要成熟许多,测试过数千进程。如果想做FEM开发,似乎DII还是更好的选择。




Host by is-Programmer.com | Power by Chito 1.3.3 beta | © 2007 LinuxGem | Design by Matthew "Agent Spork" McGee