[zz]FORTRAN版非递归快速排序 - 悲催的科学匠人 - 冷水's blog
[zz]FORTRAN版非递归快速排序
冷水
posted @ 2012年11月01日 19:33
in fortran
with tags
quick sort
, 2975 阅读
在二叉树离散网格单元时,最初使用递归的,但是网格单元到百万量级时,排序程序就出错了。怀疑是递归耗尽系统堆栈的问题,搜到一个非递归版本: http://www.fortran.com/fortran/quick_sort2.f 百万量级也不是问题了。
PROGRAM test_nrqsort REAL,ALLOCATABLE :: array(:) INTEGER,ALLOCATABLE :: idx(:) INTEGER N,i INTEGER,PARAMETER :: seed = 86456 !READ(*,*) N N = 5000000 ALLOCATE(array(N),idx(N)) CALL srand(seed) DO i=1,N; array(i) = rand() ENDDO WRITE(*,*) 'sorting' CALL SORTRX(N,array,idx) !DO i=1,N ! WRITE(*,*) array(idx(i)) !ENDDO DO i=2,N IF(array(idx(i)) .lt. array(idx(i-1)) ) THEN WRITE(*,*) 'error', array(idx(i)), array(idx(i-1)) ENDIF ENDDO DEALLOCATE(array,idx) END C From Leonard J. Moss of SLAC: C Here's a hybrid QuickSort I wrote a number of years ago. It's C based on suggestions in Knuth, Volume 3, and performs much better C than a pure QuickSort on short or partially ordered input arrays. SUBROUTINE SORTRX(N,DATA,INDEX) C=================================================================== C C SORTRX -- SORT, Real input, indeX output C C C Input: N INTEGER C DATA REAL C C Output: INDEX INTEGER (DIMENSION N) C C This routine performs an in-memory sort of the first N elements of C array DATA, returning into array INDEX the indices of elements of C DATA arranged in ascending order. Thus, C C DATA(INDEX(1)) will be the smallest number in array DATA; C DATA(INDEX(N)) will be the largest number in DATA. C C The original data is not physically rearranged. The original order C of equal input values is not necessarily preserved. C C=================================================================== C C SORTRX uses a hybrid QuickSort algorithm, based on several C suggestions in Knuth, Volume 3, Section 5.2.2. In particular, the C "pivot key" [my term] for dividing each subsequence is chosen to be C the median of the first, last, and middle values of the subsequence; C and the QuickSort is cut off when a subsequence has 9 or fewer C elements, and a straight insertion sort of the entire array is done C at the end. The result is comparable to a pure insertion sort for C very short arrays, and very fast for very large arrays (of order 12 C micro-sec/element on the 3081K for arrays of 10K elements). It is C also not subject to the poor performance of the pure QuickSort on C partially ordered data. C C Created: 15 Jul 1986 Len Moss C C=================================================================== INTEGER N,INDEX(N) REAL DATA(N) INTEGER LSTK(31),RSTK(31),ISTK INTEGER L,R,I,J,P,INDEXP,INDEXT REAL DATAP C QuickSort Cutoff C C Quit QuickSort-ing when a subsequence contains M or fewer C elements and finish off at end with straight insertion sort. C According to Knuth, V.3, the optimum value of M is around 9. INTEGER M PARAMETER (M=9) C=================================================================== C C Make initial guess for INDEX DO 50 I=1,N INDEX(I)=I 50 CONTINUE C If array is short, skip QuickSort and go directly to C the straight insertion sort. IF (N.LE.M) GOTO 900 C=================================================================== C C QuickSort C C The "Qn:"s correspond roughly to steps in Algorithm Q, C Knuth, V.3, PP.116-117, modified to select the median C of the first, last, and middle elements as the "pivot C key" (in Knuth's notation, "K"). Also modified to leave C data in place and produce an INDEX array. To simplify C comments, let DATA[I]=DATA(INDEX(I)). C Q1: Initialize ISTK=0 L=1 R=N 200 CONTINUE C Q2: Sort the subsequence DATA[L]..DATA[R]. C C At this point, DATA[l] <= DATA[m] <= DATA[r] for all l < L, C r > R, and L <= m <= R. (First time through, there is no C DATA for l < L or r > R.) I=L J=R C Q2.5: Select pivot key C C Let the pivot, P, be the midpoint of this subsequence, C P=(L+R)/2; then rearrange INDEX(L), INDEX(P), and INDEX(R) C so the corresponding DATA values are in increasing order. C The pivot key, DATAP, is then DATA[P]. P=(L+R)/2 INDEXP=INDEX(P) DATAP=DATA(INDEXP) IF (DATA(INDEX(L)) .GT. DATAP) THEN INDEX(P)=INDEX(L) INDEX(L)=INDEXP INDEXP=INDEX(P) DATAP=DATA(INDEXP) ENDIF IF (DATAP .GT. DATA(INDEX(R))) THEN IF (DATA(INDEX(L)) .GT. DATA(INDEX(R))) THEN INDEX(P)=INDEX(L) INDEX(L)=INDEX(R) ELSE INDEX(P)=INDEX(R) ENDIF INDEX(R)=INDEXP INDEXP=INDEX(P) DATAP=DATA(INDEXP) ENDIF C Now we swap values between the right and left sides and/or C move DATAP until all smaller values are on the left and all C larger values are on the right. Neither the left or right C side will be internally ordered yet; however, DATAP will be C in its final position. 300 CONTINUE C Q3: Search for datum on left >= DATAP C C At this point, DATA[L] <= DATAP. We can therefore start scanning C up from L, looking for a value >= DATAP (this scan is guaranteed C to terminate since we initially placed DATAP near the middle of C the subsequence). I=I+1 IF (DATA(INDEX(I)).LT.DATAP) GOTO 300 400 CONTINUE C Q4: Search for datum on right <= DATAP C C At this point, DATA[R] >= DATAP. We can therefore start scanning C down from R, looking for a value <= DATAP (this scan is guaranteed C to terminate since we initially placed DATAP near the middle of C the subsequence). J=J-1 IF (DATA(INDEX(J)).GT.DATAP) GOTO 400 C Q5: Have the two scans collided? IF (I.LT.J) THEN C Q6: No, interchange DATA[I] <--> DATA[J] and continue INDEXT=INDEX(I) INDEX(I)=INDEX(J) INDEX(J)=INDEXT GOTO 300 ELSE C Q7: Yes, select next subsequence to sort C C At this point, I >= J and DATA[l] <= DATA[I] == DATAP <= DATA[r], C for all L <= l < I and J < r <= R. If both subsequences are C more than M elements long, push the longer one on the stack and C go back to QuickSort the shorter; if only one is more than M C elements long, go back and QuickSort it; otherwise, pop a C subsequence off the stack and QuickSort it. IF (R-J .GE. I-L .AND. I-L .GT. M) THEN ISTK=ISTK+1 LSTK(ISTK)=J+1 RSTK(ISTK)=R R=I-1 ELSE IF (I-L .GT. R-J .AND. R-J .GT. M) THEN ISTK=ISTK+1 LSTK(ISTK)=L RSTK(ISTK)=I-1 L=J+1 ELSE IF (R-J .GT. M) THEN L=J+1 ELSE IF (I-L .GT. M) THEN R=I-1 ELSE C Q8: Pop the stack, or terminate QuickSort if empty IF (ISTK.LT.1) GOTO 900 L=LSTK(ISTK) R=RSTK(ISTK) ISTK=ISTK-1 ENDIF GOTO 200 ENDIF 900 CONTINUE C=================================================================== C C Q9: Straight Insertion sort DO 950 I=2,N IF (DATA(INDEX(I-1)) .GT. DATA(INDEX(I))) THEN INDEXP=INDEX(I) DATAP=DATA(INDEXP) P=I-1 920 CONTINUE INDEX(P+1) = INDEX(P) P=P-1 IF (P.GT.0) THEN IF (DATA(INDEX(P)).GT.DATAP) GOTO 920 ENDIF INDEX(P+1) = INDEXP ENDIF 950 CONTINUE C=================================================================== C C All done END
2022年8月30日 20:39
Dinajpur also one of the best education in the country and the Dinajpur Division also successfully completed the Grade 8 terminal examination tests along with other education boards or divisions of the country, and there are a huge number of students are participated from Dinajpur Board also, JDC Result Dinajpur and all are waiting to check their JSC Result 2022 with full or total marksheet. Both of Junior School Certificate & Junior Dakhil Certificate students are waiting to get official result date to check their total GPA Grade point with subject wise marksheet, the Dinajpur Division also completed those STD-8 final exams in the month of November as per date sheet issued by Bangladesh Secondary and Higher Secondary Education Board and the result is also announced as per the schedule.
2024年1月15日 20:24
I really like your take on the issue. I now have a clear idea on what this matter is all about