悲催的科学匠人 - 冷水's blog
KNN算法的实现
具体描述见machine learning in action
knn.h
/* knn.c */ struct KNN *KNNInit(int nvectors, int dim, int ngroup, int *ierr); void KNNFree(struct KNN *knn, int *ierr); double *KNNGetdata(struct KNN *knn, int ivec, int *ierr); double KNNGetCoord(struct KNN *knn, int ivec, int icoord, int *ierr); void KNNSetGroup(struct KNN *knn, int ivec, int group, int *ierr); void KNNSetDataGroup(struct KNN *knn, int ivec, double *data, int group, int *ierr); void KNNCalcScale(struct KNN *knn, int *ierr); double KNNCalcDistance(struct KNN *knn, int ivec, double *mydata, int *ierr); int KNNCalcGroup(struct KNN *knn, double *mydata, int k, int *ierr);
knn.c
#include <stdlib.h> #include <math.h> #include <stdlib.h> struct KNN{ int nvec; int dim; double *data; double *scale; int ngroups; int *group; /* group ID (0,1,..., ngroups-1) for each vec*/ }; inline int KNNGetDataOffset(struct KNN *knn, int ivec) { return ivec*knn->dim; } inline int KNNCheckIvec(struct KNN* knn, int ivec) { if( ivec<0 || 1+ivec>knn->nvec) return 1; else return 0; } struct KNN* KNNInit(int nvectors, int dim, int ngroup, int *ierr) { double *data, *scale; int *group, i; if(nvectors<1) {*ierr = 1; puts("KNNInit, error, nvectors<1"); return NULL; } if(dim<1) {*ierr= 2; puts("KNNInit, error, dim<1"); return NULL; } if(ngroup<2) {*ierr=4; puts("KNNInit, error, ngroup<2"); return; } data = (double*) calloc(nvectors*dim, sizeof(double)); if (data==NULL) {*ierr = 5; puts("KNNInit, error, calloc knn->data fail"); return; } group = (int*) calloc(nvectors, sizeof(int)); if(group==NULL) {*ierr=6; puts("KNNInit, error, calloc knn->group fail"); return;} for(i=0;i<nvectors;i++) group[i] = -1; scale = (double*) calloc(dim, sizeof(double)); if(scale==NULL) {*ierr=7; puts("KNNInit, error, calloc knn->scale fail"); return;} struct KNN* knn = (struct KNN*)calloc(1,sizeof(struct KNN)); if(knn==NULL) {*ierr=999; puts("KNNInit, error, calloc KNN fail"); return NULL;} knn->data = data; knn->group = group; knn->scale = scale; knn->nvec= nvectors; knn->dim = dim; knn->ngroups = ngroup; ierr = 0; return knn; } void KNNFree(struct KNN* knn, int* ierr) { if(knn==NULL) return; if(knn->data) free(knn->data); if(knn->group) free(knn->group); free(knn); } double* KNNGetdata(struct KNN *knn, int ivec, int *ierr) { *ierr = KNNCheckIvec(knn,ivec); if(*ierr) {puts("KNNGetData, irror, Wrong ivec"); return;} return knn->data + KNNGetDataOffset(knn, ivec); } double KNNGetCoord(struct KNN* knn, int ivec, int icoord, int* ierr) { double *data; data = KNNGetdata(knn, ivec, ierr); if(*ierr) return 0; if(icoord<0 || icoord>=knn->dim) { puts("KNNGetCoord, error, wrong icoord"); *ierr= 2; return 0; } *ierr = 0; return data[icoord]; } void KNNSetGroup(struct KNN* knn, int ivec, int group, int* ierr) { *ierr = KNNCheckIvec(knn,ivec); if(*ierr) {puts("KNNSetGroup, error, Wrong ivec"); return;} *ierr = group<0 || group>=knn->ngroups; if(*ierr) {puts("KNNSetGroup, error, Wrong group ID (should be [0,..,ngroups-1])"); return;} knn->group[ivec] = group; *ierr = 0; return; } void KNNSetDataGroup(struct KNN *knn,int ivec, double *data, int group, int* ierr) { int i; double *knndata = KNNGetdata(knn, ivec, ierr); if(*ierr) return; for(i=0; i<knn->dim; i++) knndata[i] = data[i]; KNNSetGroup(knn, ivec, group, ierr); if(*ierr) return; *ierr = 0; return; } static int KNNIsDataFilled(struct KNN* knn) { int i; for(i=0; i<knn->nvec; i++) if(knn->group[i]==-1) return 0; return 1; } void KNNCalcScale(struct KNN* knn, int *ierr) { int i,d; if(!KNNIsDataFilled(knn)) { puts("KNNCalcScale, error, data is not filled"); return; } for(d=0;d<knn->dim;d++){ double xmax,xmin; xmin = KNNGetCoord(knn, 0, d, ierr); xmax = xmin; for(i=1; i<knn->nvec; i++){ double f; f = KNNGetCoord(knn, i, d, ierr); if(xmax<f) xmax = f; if(xmin>f) xmin = f; } if(xmax!=xmin) knn->scale[d] = 1./((xmax-xmin)*(xmax-xmin)); else knn->scale[d] = 1.0; } } double KNNCalcDistance(struct KNN *knn, int ivec, double *mydata, int *ierr) { double *data=NULL, dist=0.0; int i; data = KNNGetdata(knn, ivec, ierr); if(*ierr) {puts("KNNCalcDistance, error, KNNGetData fail"); return;} for(i=0;i<knn->dim;i++){ dist += (mydata[i]-data[i]) * (mydata[i]-data[i]) * knn->scale[i]; } *ierr = 0; return sqrt(dist); } static void make_list(double *dlist, int* idlist, int n, int cid, double cdist) { double dmax; int imax, i; dmax = dlist[0]; imax=0; for(i=1;i<n;i++){ if(dlist[i]>dmax) {dmax=dlist[i]; imax=i;} } if(cdist>dmax) return; else{ dlist[imax] = cdist; idlist[imax]= cid; } } static int vote(struct KNN* knn, int *groups, int k) { int *votes; int i, max=0; votes = (int*) calloc(knn->ngroups, sizeof(int)); for(i=0;i<knn->ngroups;i++) votes[i]=0; for(i=0; i<k; i++) votes[ groups[i] ] ++; for(i=1; i<knn->ngroups; i++) { if(votes[i]>votes[max]) max=i; } return max; } int KNNCalcGroup(struct KNN* knn, double *mydata, int k, int* ierr) { double* dists; int* vecid; int n; double dmax,dmin; int imax,imin; dists = (double*) calloc(k, sizeof(double)); if(dists==NULL) {*ierr=-1; puts("KNNCalcGroup, error, cannot allocate space for dists"); return;} vecid = (int*) calloc(k, sizeof(int)); if(vecid==NULL) {*ierr=-1; puts("KNNCalcGroup, error, cannot allocate space for vecid"); return;} for(n=0;n<k;n++){ dists[n] = -1.; vecid[n] = -1; } for(n=0;n<knn->nvec;n++){ double cdist; cdist = KNNCalcDistance(knn, n, mydata, ierr); if(n==0){ int l; for(l=0;l<k;l++) { dists[l] = cdist; dmax=cdist;dmin=cdist; vecid[l] = n; imax=n; imin=n; } } else{ make_list(dists, vecid, k, n, cdist); } } free(dists); for(n=0;n<k;n++) vecid[n] = knn->group[vecid[n]]; n = vote(knn, vecid,k); free(vecid); return n; }
测试手写数字识别的程序 digits.c
#include <stdio.h> #include "knn.h" #define NVEC 1934 #define DIM 1024 #define NGROUP 10 #define K 3 void InputData(struct KNN *knn) { FILE* fp; int id=0, i, ndata[10]={188, 197, 194, 198, 185, 186, 194, 200, 179, 203}; double mydata[DIM]; int g, n, ierr; char fname[32]; for(g=0;g<10;g++) for(n=0;n<=ndata[g];n++){ double mydata[1024]; sprintf(fname,"trainingDigits/%d_%d.txt", g,n); //puts(fname); fp = fopen(fname,"r"); for(i=0;i<1024;i++){ int d; fscanf(fp,"%1d",&d); mydata[i] = d; } KNNSetDataGroup(knn, id, mydata, g, &ierr); if(ierr!=0) puts("ERROR!!"); id ++; fclose(fp); } printf("Read %d training data\n",id); } void Test(struct KNN *knn) { FILE* fp; int id=0, i, ndata[10]={86, 96, 91, 84, 99, 99, 86, 95, 90, 88}; double mydata[DIM]; int g, n, ierr,score; char fname[32]; for(g=0;g<10;g++) { score = 0; for(n=0;n<=ndata[g];n++){ double mydata[1024]; int ans; sprintf(fname,"testDigits/%d_%d.txt", g,n); fp = fopen(fname,"r"); for(i=0;i<1024;i++){ int d; fscanf(fp,"%1d",&d); mydata[i] = d; } fclose(fp); ans = KNNCalcGroup(knn, mydata, K, &ierr); if(ans==g) score ++; else{ printf(" fail for %s\n",fname); } } printf("Digit %1d score=%3d/%3d = %6.2f%%\n", g, score, ndata[g]+1, 100.*score/(ndata[g]+1.)); } } int main(void) { int ierr; struct KNN* knn; knn = KNNInit(NVEC,DIM,NGROUP, &ierr); if(ierr) {puts("can not KNNInit"); return; } InputData(knn); KNNCalcScale(knn, &ierr); Test(knn); KNNFree(knn, &ierr); }
svn/trac/apache服务设置
我照着如下网页搞的,还很顺利
http://www.subversionary.org/howto/setting-up-a-subversion-server-on-ubuntu-gutsy-gibbon-server
如果像我一样需要创建多个项目
那只需要:
1 创建 svn库,我这里名字是write
sudo svnadmin create /var/svn/write
或者拷贝一个已经有的库目录
注意要强制设置目录归属
sudo chown -R svn.svn svn
2 为svn添加http访问
$ vim /etc/apache2/sites-enabled/000-default
添加类似如下片段
<Location /svn/write>
DAV svn
SVNPath /var/svn/write
AuthType Basic
AuthName "Subversion Repository"
AuthUserFile /etc/apache2/passwords
Require valid-user
</Location>
3 为svn添加trac项目
$ sudo trac-admin /var/www/trac/write initenv
填填trac的名称,还是用write
$ sudo vim trac/write/conf/trac.ini
找到 repository_dir 设置好对应的svn路径
repository_dir = /var/svn/write
注意再次设置目录归属
$ sudo chown -R www-data.svn trac
4 最后重启apache
$ sudo /etc/init.d/apache2 force-reload
可以看到trac页面下就多了一个新项目
tecplot在ubuntu 12.04中的怪异问题
背景透明,光线渲染错误等奇怪问题。
http://www.tecplot.com/knowledgebase/2012/07/20/translucency-when-using-ubuntu-unity/
只要设置环境变量
export XLIB_SKIP_ARGB_VISUALS=1
就ok了
linux下禁止一般用户访问USB存储、光盘和网络
查了老半天,发现如下方法最easy
将自动mount的目录 /media 和 /cdrom 的权限设置为 700 即可
至于网络,在/etc/rc.local中加入 sudo ifconfig eth0 down 即可